나무모에 미러 (일반/어두운 화면)
최근 수정 시각 : 2024-08-26 21:30:46

스퀘어-1


파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
인천 연수구에 위치한 쇼핑몰에 대한 내용은 스퀘어원 문서
번 문단을
부분을
, BLACKPINK의 음반에 대한 내용은 SQUARE ONE 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
파일:wcalogo.svg WCA 공인 큐브 종목
n×n×n
파일:WCA 333.svg
3×3×3
파일:WCA 222.svg
2×2×2
파일:WCA 444.svg
4×4×4
파일:WCA 555.svg
5×5×5
파일:WCA 666.svg
6×6×6
파일:WCA 777.svg
7×7×7
핸디캡
n×n×n
파일:WCA 333OH.svg
한 손
3×3×3
파일:WCA 333FMC.svg
최소회전
3×3×3
파일:WCA 333BLD.svg
블라인드
3×3×3
파일:WCA 444BLD.svg
블라인드
4×4×4
파일:WCA 555BLD.svg
블라인드
5×5×5
파일:WCA 333MBL.svg
멀티 블라인드
3×3×3
기타
트위스티
퍼즐
파일:WCA MEGAMINX.svg
메가밍크스
파일:WCA PYRAMINX.svg
피라밍크스
파일:WCA SKEWB.svg
스큐브
파일:WCA SQ1.svg
스퀘어-1
파일:WCA CLOCK.svg
루빅스 클락
{{{#!wiki style="margin:0 -10px -5px;min-height:2em"
{{{#!folding [ 월드 챔피언쉽 대회 펼치기·접기 ]
{{{#!wiki style="margin: -6px -1px -11px"
1982년 2003년 2005년 2007년 2009년 2011년
2013년 2015년 2017년 2019년 2023년
}}}}}}}}} ||
{{{#!wiki style="margin:0 -10px -5px;min-height:2em"
{{{#!folding [ 폐지된 종목 펼치기·접기 ]
{{{#!wiki style="margin: -6px -1px -10px"
발 3×3×3 루빅스 매직 마스터 매직 3×3 멀티 블라인드(구) }}}
}}}}}}
스퀘어-1
SQ-1
파일:Qifa-600.jpg
사진은 치이(트위스티 퍼즐 제조사)의 제품.
특성
외형 직육면체[1]
특징 점블링 가능, 밴디지드
대칭 정이각이면체 대칭 ([math(\displaystyle D_2)]) 대칭 차수 [math(4)]
회전 및 절단 구조
회전축 면 회전(FT) 회전축의 수 [math(3)]
절단면 밑면 중심축 기준으로 8분할,
엣지 30°, 코너 60°
옆면 중심축을 지나고
한 옆면의 중심과 15°를 이루는 분할면, 2분할
조각
조각의 종류 조각 수 회전 수 경우의 수 비고
코너 8 12 [math(8!)] 총 19,305가지
경우의 수[2]
엣지 8 [math(8!)]
중앙 2 2 [math(2)]
가능한 경우의 수
[math(\displaystyle 19,305\times2\times\left(8!\right)^2 \approx 6.276\ 837\times{10}^{13})][3]

1. 개요2. 회전기호3. 해법4. 추천 큐브5. 기타

[clearfix]

1. 개요

트위스티 퍼즐의 일종이다. 1990년경 카렐 허셀과 보체크 코프스키에 의해서 발명된 직육면체[4] 모양의 큐브이다. 1층과 3층에는 4개의 30° 조각과 4개의 60° 조각이 있고, 2층에는 큰 조각 두 개가 있다. 현재 정식 큐브대회 종목 중 하나이다. 회전 제약이 상당히 많아 초심자들이 고전하는 큐브이다.[5] 회전기호도 루빅스 큐브와는 다르게 순서쌍을 써서 읽기 힘들다.[6]

완벽하게 해결된 상태일 때의 형태는 밑면이 정사각형이고, 높이가 밑면 한 변의 길이보다 아주 약간 더 긴 직육면체다. 슬라이스 조작을 중간까지 하다 말았을 때, 높이와 슬라이스 단면의 길이가 같다는 것을 알 수 있는데, 이를 이용하면 정사각형인 밑면의 변 길이와 높이의 비율을 알 수 있다. 높이는 밑면 한 변의 길이의 약 [math(\sec 15\degree = \sqrt{6}-\sqrt{2} \approx 1.035)]배로, 거의 차이가 나지 않기 때문에 정육면체처럼 보인다.

2. 회전기호

스퀘어-1의 공식은 다음과 같은 식으로 쓴다.
(0, -1) / (-3, 0) / (4, 1) / (-4, -1) / (3, 0) / (0, -1)[7]

이를 이해하기 위해서는 먼저 큐브를 제대로 잡아야 한다. 2층의 조각이 두 조각이 있을 텐데, 하나는 왼쪽에 하나는 오른쪽에 오도록 잡는다. 이때 앞에서 봤을 때 2층이 한쪽은 길고 한쪽은 짧게 나뉘어 있을 텐데, 짧은 쪽이 왼쪽이 오도록 잡아야 한다.

슬래시(/)는 오른쪽 절반 전체를 180° 돌리는 것이다. 물론 특유의 회전 제약에 걸려 슬래시가 불가능한 상황도 많다.

(a, b)와 같은 순서쌍은 윗면과 아랫면을 돌리는 것이다. a가 윗면, b가 아랫면이다. 양수가 시계 방향, 음수가 반시계 방향을 뜻하며, 1이 30°를 의미한다. 즉 (4, 1)은 윗면을 시계 방향으로 120°, 아랫면을 시계 방향으로 30° 돌리라는 뜻이다. 당연하지만 스퀘어-1에서는 6(=180°)을 초과하지 않는다.

초심자들은 시계 방향과 반시계 방향도 헷갈리고, 자기가 지금 몇 도를 돌렸는지도 헷갈릴 것이다. 큰 조각은 60°고 작은 조각은 30°, 더 쉽게는 작은 조각 = 1, 큰 조각 = 2. 이렇게 외워도 된다.

스퀘어-1에서 공식을 쓰기 위해서는 항상 윗면과 아랫면이 정사각형이 되어야 한다. 그렇지 않은 상태에서 공식을 적용하면 회전 제약에 걸릴 것이다. 따라서 모든 스퀘어-1 해법은 윗면과 아랫면을 정사각형으로 만드는 것부터 출발한다.

3. 해법

초급, 중급, 그리고 고급해법인 PLL과 반덴버그 해법이 있다. 스퀘어의 조각 이동 방법을 이해한다면 루 해법도 스퀘어의 PLL과 같이 사용할 수 있다. 해법 종류는 다양해도 처음에 모양이 바뀐 상황에서 직육면체로 만든다는 점은 같다. 각 고급해법의 순서는 다음과 같다.

후에 큐브매니아 카페에서 SP2라는 이름의 해법이 공개되었는데, 이 해법은 기존의 해법들과는 전혀 다른 순서를 채택한다는 점이 흥미있다.

더 자세한 사항은 스퀘어-1/해법 문서로.

4. 추천 큐브

제품의 종류가 그리 많지 않다. 그 많지 않은 제품 중 궈지아 스퀘어-1과 에디슨 스퀘어-1[8] 을 제외하면 웬만한 제품은 모두 좋았다. 그중 캘빈스 스퀘어-1이나 mf8 스퀘어-1 큐브1을 사용하는 경우가 많았지만[9] 치이에서 코너커팅이 가능한 역대급 구조를 가지고 출시하면서 판도를 뒤바꿨다. 2024년 현재는 YJ의 MGC가 1인자.[10]

현재 기준 최고기록은 Ryan Pilat이 2024년에 세운 3.41초(싱글) / Dylan Baumbach가 2024년에 세운 4.88초(평균)이다.

5. 기타

공식 자체가 상당히 까다롭고, 핑거트릭을 사용하기 어려운 구조[11]라서, 정식 대회 종목임에도 불구하고 국내에서는 하는 사람은 그다지 많지 않다. 그러나 블루오션인 만큼 국내 기록이나 대회에서 순위권 안에 들기 쉽다. 이 큐브를 제작하는 회사도 한정적[12]이어서 큐브 선택의 폭이 좁다. 그러나 그 한정적인 큐브가 상당히 좋아서 다들 그 큐브를 쓰는 상황.

60° 조각을 반으로 나눠서 모든 조각을 30°로 만들어 놓은 게 있는데, 그것이 바로 스퀘어-2. 스퀘어-1과는 달리 회전 제약은 없지만, 조각 수가 많아진 만큼 난이도는 어려워진다.[13] 스퀘어-2에서 모서리 부분에 있는 30° 조각을 죄다 15°로 반토막내놓은 큐브도 있는데, 예상했다시피 이름은 스퀘어-3.[14] 하지만 반대로 스퀘어-0도 있고, 엣지와 코너를 붙혀서 소수점을 탄생시키는 마개조도 있다. #


[1] 외형은 직육면체이나, 퍼즐의 대칭은 직육면체 대칭이 아니라 정이각이면체 대칭이다.[2] 한쪽 밑면에 (0, 2, 4, 6, 8)개의 30° 조각이 있을 때, 그 밑면은 (1, 3, 10, 10, 5)가지 형태를 가질 수 있고, 각각 회전한 것을 서로 다르게 보면 각각 (2, 36, 105, 112, 54)의 경우의 수가 존재할 수 있다. 따라서 경우의 수는 2×(2×54) + 2×(36×112) + 1052 = 19,305.[3] 정확히 62 768 369 664 000, 약 63.[4] 정육면체처럼 보이나 미묘하게 길이가 다르다.[5] 다룰 줄 모르는 사람은 섞기도 힘들다.[6] 물론 익숙해지면 큐브를 직접 보지 않은 채로 기호를 적용할 수 있게 된다.[7] 위·아랫면 엣지 교환 공식 중 하나이다.[8] 에디슨 브랜드를 만드는 신광사가 사실 수입해서 로고바꿔치기해서 파는 걸로 유명하다. 이 제품도 궈지아 스퀘어-1과 구조가 정말 똑같아서 사실상 동일제품이라 봐도 무방하다. 또 궈지아 스퀘어-1은 다얀보다 더 예전에 황제였던 회사인 궈지아(国甲)가 아니라 国佳이다... 그러니까 제품을 사서 상표 바꿔치기 해서 팔았는데 알고보니까 원래 제품도 바꿔치기 되었던 큐브라는(...)건가?[9] 사실 이 둘은 같은 제품이다. 캘빈스 스퀘어-1은 mf8의 재포장OEM이다. 또한 mf8 스퀘어-1의 경우 큐브1과 큐브2, 3, 4가 있는데 숫자가 크다고 무조건 좋은 것이 아님을 명심하자. 참고로 큐브1(캘빈스)의 성능이 훨씬 좋다.[10] 가끔 치이의 볼트v2 혹은 위신의 리틀매직을 사용하는 사람이 있긴 하나 거의 모든 랭커들은 MGC를 더 선호한다.[11] 윗면과 밑면을 제외하고 옆면을 돌릴 때 항상 180°씩 돌려야 돼서 손동작이 꽤 어렵다.[12] 쓸만한 큐브는 좀 있지만 스피드솔빙용을 보자면 치이, 관룽, 웨이룽, 볼트 딱 4종밖에 되지 않는다. 3×3×3 큐브가 수십가지인 것과는 차이가 있다.[13] 2020년 현재 스퀘어-2의 세계기록은 23.39초이다.[14] 이걸 썰다 못해 나중엔 2층도 썬다.