수학상수 Mathematical Constants | |||||
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -5px -1px -11px" | [math(^\ast)] 초월수임이 증명됨. | ||||
[math(0)] (덧셈의 항등원) | [math(1)] (곱셈의 항등원) | [math(sqrt{2})] (최초로 증명된 무리수) | [math(495)], [math(6174)] (카프리카 상수) | [math(0)], [math(1)], [math(3435)], [math(438579088)] (뮌하우젠 수) | |
[math(pi)] (원주율)[math(^\ast)] | [math(tau)] (새 원주율)[math(^\ast)] | [math(e)] (자연로그의 밑)[math(^\ast)] | [math(varphi)] (황금수) | [math(i)] (허수단위) | |
[math(G)] (카탈랑 상수) | [math(zeta(3))] (아페리 상수) | [math({rm Si}(pi))] (윌브레이엄-기브스 상수) | [math(gamma)] (오일러-마스케로니 상수) | [math(gamma_n)] (스틸체스 상수) | |
[math(Omega)] (오메가 상수)[math(^\ast)] | [math(2^{sqrt{2}})] (겔폰트-슈나이더 상수)[math(^\ast)] | [math(C_n,)] (챔퍼나운 상수)[math(^\ast)] | [math(A,)] (글레이셔-킨켈린 상수) | [math(A_k,)] (벤더스키-아담칙 상수) | |
[math(-e, {rm Ei}(-1))] (곰페르츠 상수) | [math(mu)] (라마누잔-졸트너 상수) | [math(B_{2})], [math(B_{4})] (브룬 상수) | [math(rho)] (플라스틱 상수) | [math(delta)], [math(alpha)] (파이겐바움 상수) |
Brun's constant
1. 쌍둥이 소수의 역수의 합
1919년, 노르웨이의 수학자 비고 브룬(Viggo Brun)은 쌍둥이 소수의 역수의 합이 수렴한다는 결과를 발표했는데, 이를 브룬의 정리라 부른다. 그리고, 그 수렴값을 '브룬 상수'[1]라고 부른다.[math(\displaystyle \begin{aligned} B_2 &= \!\left( \frac13+\frac15 \right) \!+ \!\left( \frac15+\frac17 \right) \!+ \!\left( \frac1{11}+\frac1{13} \right) \!+ \cdots \\ &\approx 1.9021605831 \end{aligned} )] |
이 값은 대략 1.9021605831에 근접하며, 최초 발표자의 이름을 따 이 상수를 쌍둥이 소수에 대한 브룬 상수라고 불린다. 만약, 이 합이 수렴하지 않고 발산했다면 쌍둥이 소수의 무한성이 증명되었을 것이지만[2], 이 수는 수렴한다. 이 상수는 유리수인지 무리수인지 밝혀지지 않았다. 쌍둥이 소수가 유한 개뿐이라면 그 역수의 합은 유한 개의 유리수의 합이므로 유리수가 되어야 한다. 따라서 이 상수가 무리수임이 밝혀진다면 쌍둥이 소수가 무한함이 증명된다.
2. 네쌍둥이 소수의 역수의 합
쌍둥이 소수와 유사한 것으로 '네쌍둥이 소수'(prime quadruplet)[3]라는 것이 있는데, {p, p+2, p+6, p+8}이 모두 소수인 경우를 뜻한다. 예를 들어 {5, 7, 11, 13}, {11, 13, 17, 19} 같은 것들이 있다.브룬은 이 prime quadruplet의 역수들의 합도 수렴함을 보였다.
[math(\displaystyle \begin{aligned} B_4 &= \!\left( \frac15+\frac17+\frac1{11}+\frac1{13} \right) \!+ \!\left(\frac1{11}+\frac1{13}+\frac1{17}+\frac1{19} \right) \!+ \cdots \\ &= 0.87058838... \end{aligned} )] |
2.1. 관련 문서
[1] 또는 '브룬의 상수'[2] 오일러는 소수의 역수의 합이 발산한다는 것을 밝혀내어, 소수의 무한성을 다른 방법으로 증명한 바 있다.[3] 쌍둥이 소수 둘 + 사촌 소수 + 섹시 소수 하나로 이루어진 네 쌍.