나무모에 미러 (일반/어두운 화면)
최근 수정 시각 : 2023-11-04 09:36:39

홀 효과

전자기학
Electromagnetism
{{{#!wiki style="margin:0 -10px -5px; min-height:2em; word-break:keep-all"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
기초 개념
<colbgcolor=#009><colcolor=#fff> 관련 수학 이론 [math(boldsymbol{nabla})] · 디랙 델타 함수 · 연속 방정식 · 분리 벡터
전기 · 자기 개념 전자기력 · 전자기 유도(패러데이 법칙) · 맥스웰 방정식 · 전자기파 · 포인팅 벡터 · 전자기학의 경계치 문제 · 전자기파 방사
정전기학 전하 · 전기장 · 전기 변위장 · 전기 퍼텐셜 · 가우스 법칙 · 전기 쌍극자 모멘트 · 유전율 · 대전현상 · 정전용량 · 시정수 · 정전기 방전
정자기학 자성 · 자기장 · 자기장 세기 · 자기 퍼텐셜 · 자기 쌍극자 모멘트 · 로런츠 힘 · 홀 효과 · 비오-사바르 법칙 · 앙페르 법칙 · 투자율
구현체 자석(전자석) · 발전기 · 전동기
회로이론 · 전자회로 개념 회로 기호도 · 전류 · 전압 · 전기 저항(비저항 · 전기 전도도) · 전력(전력량) · 직류 · 교류 · 키르히호프의 법칙 · 중첩의 원리 · 삼상
소자 수동소자: 직류회로(휘트스톤 브릿지) · RLC회로(커패시터 · 인덕터 · 레지스터), 변압기
능동소자: 전원 · 다이오드 · 트랜지스터 · 연산 증폭기
응용 및 심화개념
관련 학문 상대론적 전자기학 · 양자 전기역학 · 응집물질물리학 · 고체물리학 · 전자공학 · 전기공학 · 제어공학 · 물리화학 · 광학 · 컴퓨터 과학(컴퓨터 공학)
토픽 이론 광자 · 게이지 장(역장 · 장이론) · 물질파(광전효과) · 다중극 전개 · 맥스웰 변형 텐서 · 방사선 · 반도체 · 전기음성도 · 와전류 · 방전 · 자극 · 표피효과 · 동축 케이블
음향 앰프(파워앰프 · 프리앰프 · 인티앰프 · 진공관 앰프) · 데시벨 · 네퍼
반 데르 발스 힘(분산력) · 복사 · 전도(전도체 · 열전 효과) · 초전도체 · 네른스트 식
광학 굴절(굴절률 · 페르마의 원리) · 스넬의 법칙 · 산란 · 회절 · 전반사 · 수차(색수차) · 편광 · 분광학 · 스펙트럼 · 렌즈(얇은 렌즈 방정식) · 프리즘 · 거울(구면 거울 방정식) · (색의 종류 · RGB)
전산 논리 연산 · 논리 회로 · 오토마타(프로그래밍 언어) · 임베디드 · 컴퓨터 그래픽스(랜더링) · 폴리곤 · 헥스코드
생물 생체신호(생체전기 · BCI) · 신경계(막전위 · 활동전위 · 능동수송) · 신호전달 · 자극(생리학)(베버의 법칙 · 역치)
관련 문서
물리학 관련 정보 · 틀:전기전자공학 · 전기·전자 관련 정보 · 틀:이론 컴퓨터 과학 · 틀:컴퓨터공학 }}}}}}}}}

'''고체물리학·응집물질물리학
'''
{{{#!wiki style="word-break: keep-all; margin:0 -10px -5px; min-height:calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-5px -1px -11px"
<colbgcolor=#056666><colcolor=#fff>기반전자기학 · 양자역학(양자장론 · 이차양자화) · 통계역학 · 미분방정식 · 위상수학(매듭이론)
결정학고체 · 결정 · 결정 격자(브라베 격자) · 군론(점군 · 공간군) · 역격자(브릴루앙 영역) · 구조 인자 · 결함 · 준결정
에너지띠 이론결정 운동량 · 페르미 - 디랙 분포 · 자유 전자 모형(=드루드-조머펠트 모형) · 드루드 모형 · 분산 관계 · 원자가띠 · 전도띠 · 띠틈 ·페르미 준위 · 페르미 면 · 꽉묶음 모형 · 밀도범함수 이론 · 도체 · 절연체 · 반도체(양공 · 도핑)
자성강자성(이징 모형) · 반자성 · 상자성 · 반강자성 · 준강자성 · 홀 효과 · 앤더슨 불순물 모형(콘도 효과) · 초전도체(쿠퍼쌍 · 조지프슨 효과 · BCS 이론 · 보스-아인슈타인 응집 · 마이스너 효과)
강상 관계상전이(모트 전이) · 페르미 액체 이론 · 초유동체 · 준입자(양공 · 엑시톤 · 포논 · 마그논 · 플라즈몬 · 폴라리톤 · 폴라론 · 솔리톤 · 스커미온) · 선형 응답 이론(쿠보 공식 · 요동-흩어지기 정리) · 평균장 이론 · 그린 함수 · 스펙트럼 함수 · 파인만 다이어그램
위상 물리학위상부도체(그래핀) · 기하학적 위상 · 양자 홀 효과 · 마요라나 페르미온(마요라나 영준위 상태)
실험 및 장비전자현미경(SEM · TEM · STM · AFM) · XRD · 분광학(NMR · 라만 분광법) · 방사광 가속기 }}}}}}}}}

1. 개요2. 종류
2.1. 양자 홀 효과2.2. 열 홀 효과(Thermal Hall effect)2.3. 비정상 홀 효과(Anomalous Hall effect)
3. 기타

1. 개요

Hall effect

도체 또는 반도체 내부에 흐르는 전하의 이동방향에 수직한 방향으로 자기장을 가하게 되면, 금속 내부에 전하 흐름에 수직한 방향으로 전위차가 형성되게 된다. 이러한 현상을 홀 현상이라고 하고, 그렇게 형성되는 전위차를 홀 전압이라고 한다.

홀 효과는 1879년 미국의 물리학자 홀(E. Hall; 1855~1938)이 발견하였다. 어원상으로 큰 방을 뜻하는 (hall)과는 무관하다.

당연한 이야기지만, 도체 또는 반도체 내부에서 움직이는 전하의 움직임, 즉 전류는 외부 자기장에 영향을 받게 된다. 이 때 자기장을 전류에 수직한 방향으로 가해주는 경우, (+) 전하와 (-) 전하는 자기장의 방향에 따라서 도체 또는 부도체의 좌우 양단으로 흩어지게 된다. 고등학교 물리 시간에 수직한 방향으로 가해지는 자기장 안에서 전하의 움직임을 생각하면 편하다.

그럼 도대체 "이것이 왜 중요한가?"라고 물을 수 있지만 이러한 현상을 통해서 "당최 이 놈 안에서 어떤 극성의 전하가 지배적이냐?"를 설명할 수 있는 실험이다. 쉽게 말해서 물체 내부의 전하의 극성과 밀도를 대략적으로 구할 수 있는 실험 중 하나라고 할 수 있다. 또한 위 현상은 반도체의 물성 실험을 할 때 중요한데, 통제된 환경 내에서 전하의 흐름을 얼마나 조절할 수 있는지가 중요한 반도체의 특성상 각 조건에 따라 홀 효과를 측정하여서 전하 밀도를 비교한다.

또한 홀 효과는 자기장 센서에 활용된다. 통칭 홀 센서로 불리는 이 센서는 정확도가 상대적으로 높고[1] 범용적으로 사용할 수 있어, 핸드폰 등의 각종 장비에 들어가는 자기장 센서는 대부분 홀 센서를 활용하고 있다. 단독으로 자기장의 방향이나 세기를 감지하기도 하고 영구자석과 결합해 가까운 상대 위치를 정확하게 센싱하는 용도로 널리 쓰인다. 특히 게임기 패드나 조이스틱에서 각도를 센싱하는 건 대부분 값싼 가변저항기를 쓰지만 오래쓰면 저항막이 마모되어 센터가 쏠리는 드리프트 현상이 나타나는데 홀 소자를 이용하는 방식은 기계적 접촉이 없으므로 매우 수명이 길고 드리프트 현상이 없다. 고급 조이스틱이나 게임 패드의 대명사.

아래는 홀 효과를 간단히 애니메이션으로 나타낸 동영상이다.

2. 종류

2.1. 양자 홀 효과

양자 홀 효과는 2차원 표면에서 매우 낮은 온도와 강한 자기장 하에서는 홀 전도도가 양자화되는 현상을 일컫는 말이다. 위에서 설명했다시피 고전적인 홀 효과에서는 홀 현상에서의 홀 전도도가 전하밀도에 상관이 있었는데 극한적인 상황에서는 물질이고 뭐고 다 무시해버리고 특정 값의 정수배로 비례하는 일이 벌어지게 된다.

이는 자기전도도 텐서(Magneto-conductivity tensor)에서 온도가 낮고 자기장이 큰 극한상황을 정의하다보면 자연스럽게 도출되는 결과인데, 보통 이러한 상황에서의 홀 비저항은 다음과 같다.

[math( \displaystyle \rho_{xy}={h \over ne^2} )]

이때, [math(h)]는 플랑크 상수, [math(e)]는 기본 전하량이다.

이거 하나로 서독의 물리학자 클라우스 폰 클리칭이 1985년 노벨 물리학상을 받았다

보통 이러한 홀 비저항의 [math(n)] 값은 정수를 갖지만 몇몇 특수한 물질은 정수가 아닌 분수값을 가지는 경우도 존재한다.[2]

2000년대 그래핀연구의 대폭발을 일으킨 실험 기법이기도 하다.

현재는 Fractional quantum Hall effect, Quantum anomalous Hall effect, Quantum Spin Hall Effect 등의 방향의 연구가 활발하다.

2.2. 열 홀 효과(Thermal Hall effect)

물질 내에서 열이 전도될 때, 물질에 걸린 자기장에 의해 입자의 진행 방향과 수직하는 방향으로 열 전도율이 바뀌는 현상이다. 간단하게 보면, 물질 내에서 입자가 진행할 때, 한 쪽은 차갑고 다른 쪽은 상대적으로 따뜻해지는 것이라 이해할 수 있다.

2.3. 비정상 홀 효과(Anomalous Hall effect)


홀 효과가 발견된 지 1년 후에 에드윈 홀은 강자성체에서 기존 홀 효과보다 더 큰 홀 저항을 측정하였다. 자화와 스핀-궤도 결합이 있는 물질에서는 외부 자기장이 없더라도 홀 효과를 관측할수 있으며, 이 현상을 비정상(anomalous) 홀 효과라고 부른다.[3]

물질이 자화 (Magnetization) M을 가지는 경우 Hall resistance는 아래와 같이 표현된다.

[math(R_{xy} = R_{O} B + R_{A} M)] [4]

3. 기타

전자 이외에도 다양한 준입자에서 홀 효과가 이론적으로 제안되고, 실험적으로 관측되었다. 21세기 초에 들어 광자 홀 효과(Photon Hall effect)나 포논 홀 효과(Phonon Hall effect) 등이 관측되었고, 2010년 즈음에는 관측하기 난해했던 마그논 홀 효과(Magnon Hall effect)까지 발견해내게 되었다.[5]

그러나 실험물리학적 진보와는 별개로, 이 효과는 아직도 명확한 원인이 밝혀지지 않았기 때문에 21세기의 물리학에서 활발히 연구되는 주제 중 하나이다.

[1] 자기저항 센서가 정확도는 훨씬 더 높다.[2] 이런 것을 Fractional quantum Hall effect라고 한다.[3] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010)[4] [math(R_{O})] 를 ordinary Hall coefficient, [math(R_{A})] 를 Anomalous Hall coefficient 라 하며 문헌에 따라 표기가 다를 수 있다.[5] Onose, Y., Ideue, T., Katsura, H., Shiomi, Y., Nagaosa, N., & Tokura, Y. (2010). Observation of the magnon Hall effect. Science, 329(5989), 297-299.