나무모에 미러 (일반/어두운 화면)
최근 수정 시각 : 2024-11-13 11:00:13

순서 관계

순서관계에서 넘어옴
수학기초론
Foundations of Mathematics
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
다루는 대상과 주요 토픽
수리논리학 논리 · 논증{귀납논증 · 연역논증 · 귀추 · 유추} · 공리 및 공준 · 증명{증명보조기 · 자동정리증명 · 귀류법 · 수학적 귀납법 · 반증 · 더블 카운팅 · PWW} · 논리함수 · 논리 연산 · 잘 정의됨 · 조건문(조각적 정의) · 명제 논리(명제 · 아이버슨 괄호 · · · 대우) · 양상논리 · 술어 논리(존재성과 유일성) · 형식문법 · 유형 이론 · 모형 이론
집합론 집합(원소 · 공집합 · 집합족 · 곱집합 · 멱집합) · 관계(동치관계 · 순서 관계) · 순서쌍(튜플) · 서수(하세 다이어그램 · 큰 가산서수) · 수 체계 · ZFC(선택공리) · 기수(초한기수) · 절대적 무한 · 모임
범주론 범주 · 함자 · 수반 · 자연 변환 · 모나드 · 쌍대성
계산가능성 이론 계산 · 오토마타 · 튜링 기계 · 바쁜 비버 · 정지 문제 · 재귀함수
정리
드모르간 법칙 · 대각선 논법 · 러셀의 역설 · 거짓말쟁이의 역설 · 뢰벤하임-스콜렘 정리 · 슈뢰더-베른슈타인 정리 · 집합-부분합 정리 · 퍼스의 항진명제 · 굿스타인 정리 · 완전성 정리 · 불완전성 정리(괴델 부호화) · 힐베르트의 호텔 · 연속체 가설 · 퍼지 논리
기타
예비사항(약어 및 기호) · 추상화 · 벤 다이어그램 · 수학철학
틀:논리학 · 틀:이산수학 · 틀:이론 컴퓨터 과학 · 철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보 }}}}}}}}}



1. 개요2. 준순서
2.1. 부분순서
2.1.1. 순부분순서
3. 준전순서
3.1. 전순서
4. 정렬 순서5. 나무 순서6. 용어7. 예시8. 순서동형
8.1. 재미있는 결과

1. 개요

/ Order Relation

순서 관계는 수학에서의 관계의 일종이다. 보통 어떤 관계를 순서 관계라고 보는 범위는 반사성추이성을, 또는 비반사성추이성 만족시키는 것이다. 전자인 순서 관계를 처음에 소개할 '준순서'라고 부르기도 한다. 집합론에서 관계를 나타낼 때 보통 기호로 [math( R )]이나 [math( f )]같은 문자들을 사용하는 것과 달리, 순서 관계는 관례적으로 [math( \leq )]나 [math( < )]같은 기호들을 사용한다. 또는 구부러진 기호 [math( \preceq )]나 [math( \prec )]를 사용하는 경우도 적지 않다. 이는 특히 아주 일반적인 순서인 '준순서'같은 순서들을 표기할 때 쓰이는 경우가 많다.

또한 집합 [math( X )]위의 순서 관계 [math( \leq )]가 주어지면 [math( (X , \leq) )]를 순서 집합(Ordered set)이라고 한다.

2. 준순서

집합 [math(A)]에서 다음 두 조건을 만족하는 이항 관계 [math(\leq)][1]를 준순서(quasi-order) 혹은 원순서(preorder)라 한다.
  1. [math(\forall x \in A \,(x \le x))] (반사관계)
  2. [math(\forall x, y, z \in A \,((x \le y \wedge y \le z) \to x \leq z))] (추이관계)

일반적으로 순서관계라고 하면 준순서가 아닌, 아래의 부분순서 관계를 뜻한다.

2.1. 부분순서

집합 [math(A)]에서 다음 세 조건을 만족하는 이항 관계 [math(\leq)]를 부분 순서(partial order)라고 하고 [math(\left(A, \leq \right))]를 부분 순서 집합(partially ordered set, poset)이라고 한다:
  1. [math(\forall x \in A \left(x\leq x \right))] (반사관계)
  2. [math(\forall x, y \in A \left(\left(x\leq y \wedge y\leq x \right) \to x = y \right))] (반대칭관계)
  3. [math(\forall x, y, z \in A ((x\leq y \wedge y\leq z) \to x\leq z))] (추이관계)

부분순서가 주어진 유한 집합에 대해 하세 다이어그램이라는 그래프로 나타내는 방법이 있다.

2.1.1. 순부분순서

집합 [math(A)]에서 정의된 이항 관계 [math(<)]가 다음을 만족할 때, 이를 A의 순부분순서(strict partial order)라고 한다:
  1. [math(\forall x \in A \left(\neg(x<x)\right))] (비반사관계)
  2. [math(\forall x, y, z \in A ((x<y \wedge y<z) \to x<z))] (추이관계)

사실상 순부분순서와 부분순서는 거의 같은 것이다. 즉, <를 정의하면 [math(\le)]를 자연스럽게 정의할 수 있고, 반대도 마찬가지다.
[math( \left(x<y\right) \overset{\mathrm{def}}{\Longleftrightarrow} \left( x\leq y \wedge x\neq y \right))]

3. 준전순서

집합 [math(A)]에서의 이항 관계 [math(\leq)]가 다음을 만족하면, 이를 준전순서 또는 원전순서(pretotal order)라 하고, [math(\left(A, \leq \right))]를 준전순서 집합 또는 원전순서 집합(pretotally ordered set)이라 한다:
  1. [math(\forall x, y \in A \left(x\leq y \lor y \leq x \right))] (항상 비교 가능)
  2. [math(\forall x, y \in A \left(\left(x\leq y \wedge y\leq x \right) \to x = y \right))] (반사관계)
  3. [math(\forall x, y, z \in A ((x\leq y \wedge y\leq z) \to x\leq z))] (추이관계)

조건 2.와 3.을 만족하므로 앞의 준순서 관계이면서 임의의 두 원소가 항상 비교 가능한 순서이다.

3.1. 전순서

집합 [math(A)]에서의 이항 관계 [math(\leq)]가 다음을 만족하면, 이를 전순서(total order) 또는 선형순서(linear order)라 하고, [math(\left(A, \leq \right))]를 전순서 집합(totally ordered set, toset) 또는 선형 순서 집합(linearly ordered set)이라 한다:
  1. [math(\forall x, y \in A \left(x\leq y \lor y \leq x \right))] (항상 비교 가능)
  2. [math(\forall x, y \in A \left(\left(x\leq y \wedge y\leq x \right) \to x = y \right))] (반대칭관계)
  3. [math(\forall x, y, z \in A \,((x \le y \wedge y \le z) \to x \leq z))] (추이관계)

앞의 모든 순서들에게 있던 조건인 반사관계가 빠진 이유는 조건 1.로부터 아래와 같이 유도할 수 있기 때문이다.

[math(\begin{aligned}
\forall x&\in A(x \leq x \lor x \leq x) \\
\therefore\forall x&\in A(x \leq x) \\
\end{aligned})]

따라서 이것을 포함하여 전순서의 조건을 나열하면, (항상 비교 가능), (반사관계, 반대칭관계, 추이관계) 만족하는 순서가 된다. 이를 통해 전순서는 준전순서이면서 부분 순서인 순서임을 알 수 있다.

전순서는 부분 순서이기도 하므로 전순서의 하세 다이어그램을 그려보면, 원소들을 일렬로 배치하는 모양을 생각할 수 있다. 이런 점에서 부분순서 집합의 부분집합인 전순서 집합을 사슬(chain)이라고 부르기도 한다. 이와 비슷하게 부분순서 집합을 그물이라 부르는 경우도 있다.

4. 정렬 순서

전순서 집합 [math(A)]의 임의의 부분집합이 최소원소를 가지면, [math(A)]를 정렬집합(well-ordered set)이라 하고, 그 전순서를 정렬 순서(well-ordering)이라 한다.

정렬 집합은 어떤 서수(ordinal)에 대해 순서 동형이다. 즉, [math(ON)]을 서수의 고유 모임이라고 하면, 임의의 정렬 집합 [math(A)]에 대하여 [math(x,\:y\in A,\:\:x<y\iff f(x)<f(y))]인 전단사함수 [math(f:A\to\alpha)]가 존재하는 서수 [math(\alpha\in ON)]가 존재한다.

선택공리를 가정하면, 임의의 집합에 정렬순서를 줄 수 있는게 보장된다. 이를 정렬 정리(well-ordering theorem)라고 하는데, ZF 하에서 선택공리와 동치인 대표적인 명제이다.

5. 나무 순서

파일:상세 내용 아이콘.svg   자세한 내용은 나무(순서론) 문서
번 문단을
부분을
참고하십시오.

6. 용어

7. 예시

8. 순서동형

[math(\forall x, y \in A (x <_1 y \leftrightarrow f(x) <_2 f(y)))]를 만족하는 일대일대응 [math(f:A \to B)]가 존재할 때 [math(f)]를 순서동형사상이라 하고, 두 순서집합 [math((A, <_1))]과 [math((B, <_2))]는 순서동형이라고 한다.

8.1. 재미있는 결과



[1] 본 문서에서는 초등학교 때부터 가르치는 평범한 부등호를 사용하였으나, 순서관계를 다루는 집합론, 해석학, 위상수학 등의 수학 기초과목 교과서에서는 흔히 쓰이는 부등호 대신 [math(\prec)], [math(\preceq)], [math(\succ)], [math(\succeq)]라는 살짝 휘어진 기호를 쓰기도 한다.