나무모에 미러 (일반/어두운 화면)
최근 수정 시각 : 2026-02-10 21:53:27

노화


1. 개요2. 인간의 노화
2.1. 신체적 노화2.2. 정신적 노화2.3. 노화 이론
2.3.1. 윌리엄즈의 예측
2.4. 유전적 요인2.5. 노화 극복과 오해
2.5.1. 노화 극복2.5.2. 노화에 대한 오해들
2.5.2.1. 노화의 속도는 일정하다?2.5.2.2. 노화는 질병이다?
3. 인간 외 생물의 노화
3.1. 세균3.2. 식물3.3. 동물
4. 기타

1. 개요

대저 늙음이란 나이가 많아서 감관이 완숙하고 모양이 변하고 빛깔이 쇠하며 기운이 미미하고 힘이 다하며 음식은 소화가 안 되고 뼈마디는 끊어지려 하며, 앉고 일어남에는 사람이 필요하며, 눈은 멀고 귀머거리가 되며, 문득 돌아서면 곧 말을 잊어버리고 갑자기 슬퍼지며, 목숨이 얼마 남지 않았기 때문에 늙음이라 하옵니다.
《수행본기경(修行本起經)》
aging, senescence

노화는 생물이 ‘늙는 현상’을 말한다.

늙는다는 게 뭔지는 직관적으로 다 알지만, 이 현상을 정확히 정의하기에는 의외로 미묘하고 어려운 점이 많다. 때문에 생각을 뒤집어서 반대 개념인 ‘불로’가 무엇인지를 따져 보면 도움이 된다. 불로(不老)는 ‘죽을 수는 있되, 연령이 증가함에도 불구하고 사망률이 증가하지 않는 것’을 의미한다. 현실에서도 극소수의 생명체가 갖고 있는 특성이다.[1]

현대적인 노화의 정의는 연령이 증가하면서, (사고로 인한 죽음을 제외해도) 사망률이 연령에 따라 증가하는 현상’‘연령이 증가할수록 신체능력이 퇴화하는 현상’이다.

노화를 치료 가능하다는 인식이 확산됨에 따라 인류가 해결해야 할 가장 큰 문제로 부상하고 있다. 특히 한국과 일본처럼 자원 의존도가 낮고 경제의 주축을 인력에 의존하면서 인구가 감소하는 국가의 경우 노화가 경제에 치명적인 영향을 준다. 이미 노인 문제가 심각한 일본이 노화 연구가 활발한 것도 이 때문이다.[2] 많은 이가 노화 치료와 관련한 연구를 하면 인간의 기대수명은 점차 길어질 것이다.

2. 인간의 노화

파일:킬리언 머피 노화.jpg
배우 킬리언 머피
대부분의 동물과 마찬가지로 인간은 출생 후 성장하면서 육체적인 전성기를 누린 뒤, 완전히 자라고 육체적으로 점차 쇠퇴하다가 노년기에 접어들고 상당히 오랜 기간을 지내다 마침내 죽음을 맞는다.

정신적 능력이 최고에 도달하는 나이가 육체적 능력이 최고에 달하는 나이보다 나중인 경우가 많기 때문에, 두뇌는 나머지 신체 기관에 비해 천천히 완성된다는 주장이 과거에는 있었다. 그러나 오늘날에는, 정신적 능력을 판가름하는 기준 중 하나인 판단력이 축적된 경험과 학습량에 크게 좌우되기 때문에 발생하는 현상이라는 설이 지지 받는다. 실제로 순수히 사고 능력만으로 진행되는 체스바둑 같은 추상전략게임이나 e스포츠의 경우 선수들의 전성기는 육체적 전성기와 비슷하게 10대 후반에서 20대 초반 정도이다. 20대 중반 정도만 되어도 에이징 커브를 겪는다. 실제 연구 결과 상으로도 경험과 학습량의 영향이 적은 유동성 지능의 전성기는 육체적인 전성기와 비슷한 반면, 경험과 학습량에 직접적으로 연관되는 결정성 지능의 전성기는 평균 60세 정도이다.

최근 미국 대학의 연구를 통해 간 등의 내장 조직의 노화가 급속도로 진행되는 시기가 만 34세, 만 60세, 만 78세인 것으로 밝혀졌다. 기사

적절한 운동은 노화를 방지하는 데에 도움이 되지만, 과도한 운동을 하면 활성산소가 많이 만들어져 노화를 촉진시킨다. 격한 운동 생활을 오래 유지한 운동선수들은 노화가 빨라 일반인과 비교할 수 없을 정도로 노안인 경우가 많으며 평균수명도 짧다.

또한 연구 결과 나이를 잊고 젊은 사람처럼 사는 것도 노화를 늦추는 데 도움이 된다고 한다. 반대로 외로움을 잘 느끼는 것은 노화를 촉진시킨다고 한다. #1 #2 영상1 영상2 영상3

이처럼 노화가 진행되는 기전은 세포의 손상, 오작동 및 사멸 그리고 재생과 깊은 관련성을 띤다. 인간은 태내에서 발생하여 성장하는 과정에서 급격한 세포 분열과 분화를 통해 신체의 크기를 (미리 정해진 한계까지) 점점 불리고 이후 자연적인 소모나 손상을 통해 소실된 세포를 주변 세포의 분열을 통해 보충한다. 예를 들어 피부나 점막 등은 항상 마모되고 있기 때문에 끊임없이 기저세포층부터 보충을 받고 있다. 그리고 운동이나 노동 등으로 파괴된 근육 세포는 주변 근세포가 분열하며 보충해줄 뿐만 아니라 과분열을 통해 해당 강도의 운동/노동에 버틸 수 있을 만큼의 예비 근력을 준비하기까지 한다.

그러나 각각의 세포는 태어날 때 이미 정해진 분열 한계 횟수가 있다. 이는 세포가 분열할 때마다 그 핵에 들어있는 설계도인 유전자(DNA)를 복사해서 한 세트를 더 만들어야 하는 데서 비롯되는 현상이다. 그림 없이 말로 설명하긴 힘들지만 DNA가 복제되는 방법 자체의 문제로 인해 DNA 가닥의 한쪽 끝부분을 제대로 끝까지 복제해내는 것이 불가능하기 때문이다. 이를 말단 복제 문제(end replication problem)이라고 하는데, 관심이 있다면 영문 용어를 복사하여 유튜브 등에서 설명 동영상을 찾아보면 이해에 도움이 될 것이다. 조잡하게 비유를 하자면, 철봉 위에 올라앉은 채로 철봉에 페인트를 칠하는 작업자를 상상해 보자. 한쪽 끝에서부터 페인트를 칠하며 점점 다른 쪽으로 앉은 자리를 옮겨가며 페인트를 칠한다. 하지만 철봉의 맨 끝부분에는 (자신이 앉아 있으므로) 페인트를 칠할 수가 없다. 여기서 DNA 가닥을 철봉에 비유한 것이고 작업자는 DNA를 복제하는 효소이며, 페인트칠을 할 수 없는 철봉 끝부분은 DNA의 말단부다.

이 말단 복제 문제를 우회하기 위해 DNA에는 텔로미어(말단소립)라는 여분의 DNA 부분이 말단 부위에 있다. 텔로미어는 없어도 되기 때문에 복제 과정에서 잃어버려도 상관 없으며, 세포는 텔로미어를 조금씩 소모하면서 자가복제를 한다. 하지만 텔로미어도 한계가 있기 때문에 세포가 일정 횟수만큼 복제를 하고 나면 텔로미어가 모두 소진되어버린다. 이 복제 한계 횟수를 헤이플릭 한계(Hayflick limit)라고 한다. 인간의 경우 약 60번이 헤이플릭 한계라고 하며, 60번 복제를 한 세포는 더 이상 복제를 할 수가 없어 사멸하게 된다.[3] 60번밖에 복제가 안 되니 턱없이 모자라겠구나 생각할 수도 있겠지만, 복제되어 생겨난 세포도 복제를 한다는 것을 기억하자. 다시 말해서 한 개의 세포가 60개로 분열하는 것이 아니다. 최대 260(1.1529215×1018, 약 115 2922)개로 증식하는 것이다.[4] [5]

이렇게 세포들이 하나둘 사멸하기 시작하면 인체에도 점차 거시적인 변화가 일어나게 된다. 피부 세포가 보충되지 않으면 피부가 전체적으로 탄력과 부피를 잃어서 얇고 쪼글쪼글하며 축 쳐지게 되며, 근육량도 점점 줄어들며, 신경세포의 사멸로 인해 정신적 능력도 점차 감퇴되어 간다. 또한 눈에는 보이지 않지만 내분비, 외분비, 면역 등에 관여하는 기관들 역시 늙어, 소위 "기력"이 쇠하고, 면역력이 낮아져 쉽게 병에 걸릴 뿐만 아니라 병에 걸린 뒤에도 잘 낫지 않고 회복도 느리다. 이런 식으로 죽음에 한발 한발 다가서게 되는 것이다.

여기까지 읽었으면 세포 분열이 노화에 직결되거나, 아님 적어도 뭔가 관련이 있음을 알아 차렸을 것이다. 그렇다면 노화를 막는 방법은 무엇이 있을까?
이 셋 중 첫 번째 항목은 개개인이 실천 가능한 방법이며 건강하게 장수하고 싶다면 반드시 지켜야 한다.

두 번째 항목은 학자들도 회의적이며, 텔로미어만 보충한다고 장땡이 아닐 것이란 의견이 많다. 텔로미어를 복구시켜주는 방법은 이미 알려져 있는데(텔로머라아제라는 효소) 이건 암세포의 특징이기도 하기 때문이다. 즉 텔로미어를 인공적으로 복구해봤자 암만 잔뜩 만들어낼 것이라는 회의론. 하지만 실제로 텔로머라아제를 이용해 장수하는 생물들도 있기 때문에(바닷가재 등) 연구할 가치는 분명 있다.

세 번째 항목은 실제로 이 방법을 통해 장수하는 포유류 동물들이 있기 때문에(고래, 코끼리 등) 상당히 유망한 방법이다. 그렇지 않아도 면역계의 활성화 및 면역 회피[9]의 억제는 21세기 분자생물학/약학에서 가장 핫한 분야이다. 면역요법을 통해 인체 면역계가 노화세포(좀비세포)를 제거하는 것을 활성화할 수 있다면, 노화의 억제 뿐 아니라 예방에도 큰 도움이 될 것이라 기대된다. 노화세포를 제거한것은 아니지만 이런 면역계의 조작을 통해 베타아밀로이드의 제거에 성공하고 치료제로 나온 사례가 있기 때문에 마냥 꿈의 기술은 아니다.

이처럼 노화를 삶의 당연한 과정으로 보는 대신 치료해야 할 대상으로 보는 시각도 존재한다. 이들은 주로 노화의 기전과 자연에서 장수하는 생물들의 생리를 연구한다.

2.1. 신체적 노화

2.2. 정신적 노화

나이가 들면 대부분 심리가 변한다. 대체로 내향성이 강해지고 안정을 추구하게 되며, 새로운 것보다는 익숙한 것을 선호하게 되므로 범용성이 떨어지며 완고해지고 보수적이 된다. 삶의 즐거움이 급감하여 무기력해지거나 우울해지는 경우도 많다.

노인 특유의 보수적인 성향은 세대 차, 세대 갈등을 유발하는 가장 큰 원인이다. 보수 성향이 지나치게 강한 경우 꼰대, 틀딱 등의 멸칭을 듣게 될 수 있다.

정신적 노화의 속도는 시대가 흐를수록 느려지는 추세다. 1980년대 이전에는 20대 초반만 되어도 매우 어른스러운 정서를 갖췄지만, 현재의 20대 초반은 청소년과 거의 다르지 않다.[12]

정신적 노화는 신체적 노화와 달리 개인차가 매우 크다. 나이가 들어도 젊게 살기 위해 노력하면 정신적 노화를 겪지 않을 수도 있다.

그렇다고 마냥 신체적 노화의 영향이 없는건 아닌데 20년만에 평균수명이 10년이 늘어났으며 노화속도가 늦어진만큼 그에 따라 신체적 유년기의 기간도 3년이나 늘어났다. 현대 20대 초반에게서 청소년 느낌이 나는 것은 이러한 신체적 영향도 있으며 노인들의 보수적인 성향은 성격차도 있지만 뇌의 노화에 의해 변화에 적응하기 어려운 점도 한 몫한다.

2.3. 노화 이론

현재 가장 보편적으로 지지를 받고 있는 이론만 말하자면, '노화는 진화적 현상이며, 노화 없는 개체보다 노화 있는 개체가 자손을 더 많이 남긴다.'

노화로 늙어서 결국엔 죽을 수밖에 없는 개체가 자손을 더 많이 남긴다니, 어떻게 보면 대단히 역설적이다. 이런 현상이 일어나는 이유를 이해하기 위해, 우선 어느 종 내부에서 노화를 보이지 않는 개체들의 집단(개체군)이 있다고 가정해 보자. 노화는 개체가 갖고 있는 유전자 관점에서 보아야 이해할 수 있기 때문에, '종(species)' 관점으로 설명할 수 없다. 어디까지나 한 종 내부에서 노화를 보이는 개체와 보이지 않는 개체의 번식률을 비교해야 한다. 그렇다면
  1. 이 개체군의 개체 수는, 사망 원인이 사고든 포식이든 병이든 간에 시간에 따라 일정한 비율만큼 지수적으로 계속 감소할 것이다.
    • 노화가 없다고 가정했기 때문에, 달리기가 느려져 포식자에게 잡혀 먹히거나 병으로 죽을 가능성은 나이에 상관없이 계속 동일하다.
    • 만약 완전히 성숙한 개체가 100만이라 하고 사망률이 1년에 50%로 일정하다고 하면, 1년 뒤에는 50만이, 2년 뒤에는 25만, 10년 뒤에는 1000 개체 이하만 남아 있을 것이다.
  2. 이 개체군 내의 어느 개체에, 노화를 유발하는 유전자가 돌연변이로 나타났다고 가정하자. 이 유전자가 세대를 거듭하면서 개체군을 이루는 다음 세대의 개체로 더 퍼져 나갈까 그렇지 않을까? 만약 전자라면 우리는 노화가 일어나지 않는 것을 관찰할 것이고, 후자라면 노화 현상을 관찰하게 될 것이다.

여기서 노화가 나타나는 경로는 크게 두 가지로 볼 수 있다.
  1. 위에서 노화 없는 개체군에서, 새끼를 낳을 수 있는 개체가 100만이어도, 사망률이 50퍼센트이기 때문에 10년 후에는 1000개체 이하만 살아남는다. 만약 10년 후에 개체를 죽게 만드는 유전자가 생겨도, 어차피 다른 이유로 죽을 가능성이 1년에 50%이므로 이 유전자 때문에 죽는 개체는 전체의 0.1% 이하다. 10년이 지나기 전에 전체의 10퍼센트라도 번식을 할 수 있다면, 이 사망 유전자 때문에 번식을 못 하는 평균적 '손해'는 1%도 안 된다.
    이 관찰을 일반화하면, 일단 개체가 번식을 시작하면 유전자가 그 후에 나타내는 해로운 효과를 걸러내는 자연 선택의 능력은 급속도로 저하한다는 것이다. 이것으로 우리는 인간이 어째서 자연 선택으로 을 떨쳐내지 못했는지를 손쉽게 이해할 수 있다. 암의 절대다수가 번식을 이미 한참 전에 끝마쳤을 생애 후반부에 발병하므로. 따라서 번식 개시 시점 후에는 해로운 효과를 나타내는 유전자가 점차 쌓이게 된다.
    이런 가능성은 처음에 존 B. S. 홀데인(Haldane)이 깨달았지만, 이 아이디어를 구체화한 것은 1952년 피터 메다워(Peter Medawar)이다.
  2. 이런 기능을 갖는 유전자가 나타났다고 해 보자; 위 1)번에서 설명한 것처럼 번식을 개시한 지 10년 후에 개체를 죽게 만들지만, 번식 개시 후 10년 내에 개체의 건강을 1% 개선시켜준다. 구체적으로, 번식 개시 후 사망률을 1년에 50%에서 49%로 낮춘다고 해 보자. 이 경우 이 개체가 늘어나는 속도는 노화가 없는 개체보다 빠를까 느릴까?
    • 차이는 '1%'에 불과하지만, 9년 후에는 이 유전자를 갖는 쪽이 개체 수가 19.5%만큼 더 많다. (물론 10년 후에는 유전자의 치사 효과가 나타나기 때문에 개체 수가 0으로 떨어지지만 말이다)
    • 따라서 이 유전자가 득인지 아닌지는, 이 10년 동안(죽기 전)에 약간 개체수가 더 많아서 나타나는 번식 이득이 10년째에 다 죽어서 나타나는 손해를 능가하는지가 결정한다.
    • 물론 정성적 예측은 쉽다; 개체가 사고나 포식 등을 당해 일찍 죽는 비율이 클수록, 나중에 개체에게 큰 손해를 입혀도 지금 당장 이득[13]을 주는 유전자가 상대적으로 더 이롭다. 만약 사망률이 1년에 50%가 아니라 75%라면, '1% 생존률 이익'은 9년 후에 개체 수의 비율을 19.5% 차이가 아니라 42.3% 차이로 만들어 놓을 것이다. 이것이 쥐나 토끼 등 '동네밥' 수준으로 잡아먹히는 동물이 번식률이 매우 높으면서 금방 노화하여 죽는 이유다. 실제 수학적으로 계산해 보면, 노화 없는 개체보다는 '번식 개시 후 어느 시점에 이득을 주면서, 거의 직후 같은 크기만큼 손해를 주는' 유전자라도 거의 항상 이로움을 확인할 수 있다. 따라서 거의 대부분의 경우 노화를 촉진하는 유전자가 번식적으로 이롭다고 간주할 수 있다. 어차피 잡혀 먹혀서 일찍 죽을 텐데, 오래 살면서 자손을 많이 남기려는 전략보다는, 장수를 위해 육체 보수에 들어가는 에너지를 생애 초기 번식에 투자하는 편이 자손 수를 더 늘릴 수 있지 않겠는가?

바로 이 논리가 저명한 진화생물학자 조지 윌리엄즈가 1957년에 처음 제안한 노화의 길항적(antagonistic) 다면발현(多面發現; pleiotropy) 이론이다.[14] 한 유전자가 젊은 시절에는 이익을 주지만 늙어서는 나쁜 영향을 줄 수 있으며, 이것이 전반적으로 번식에 이로운 경우가 많다는 것. 윌리엄즈는 성숙 전에는 칼슘을 침착시켜 뼈를 굳게 하지만 노년기에는 혈관에 칼슘을 침착시켜 동맥 경화를 일으키는 유전자를 예로 들어 설명했다.

이 뒤 윌리엄 D. 해밀턴은 1966년 윌리엄즈의 논문에서 없던 엄격한 수학적 취급을 통해 개체의 생존률과 생식률의 곱과 노화 속도가 반비례한다는[15] 점을 명확히 보였다. 그는 노화의 이러한 측면을 "Live now, pay later"라 간결하게 표현했다.

현대적 노화 이론을 세운 사람이라면 요즘에는 대체로 메다워, 윌리엄즈와 해밀턴을 꼽는다.

2.3.1. 윌리엄즈의 예측

윌리엄즈는 1957년 논문에서 다음 사항들을 예측했다.
  1. '신체'와 '생식 세포'의 구분이 있는 생물에서는 항상 노화가 나타난다.
  2. 성숙한 개체가 사망률이 낮으면 노화 속도가 늦어진다.
  3. 성숙 후 시간이 지나면서 생식률이 올라갈 경우 노화 속도가 감소한다.
  4. 성이 존재하는 생물의 경우, 사망률이 높은 쪽이 빨리 노화한다.
  5. 신체의 여러 기관이 매우 비슷한 속도로 노화한다.
  6. 생식이 끝나면 거의 모든 개체가 노화로 인해 사망한다.
  7. 성적으로 성숙하면 바로 노화가 개시된다.
  8. 개체가 빨리 발달하면, 더 빨리 노화가 개시된다.
  9. 수명을 증가시키는 변화는 젊은 시기의 활력을 줄인다.

6번과 비추어 윌리엄즈는 인간 여성이 폐경 후에도 오래 사는 현상은 상당히 예외적이라고 지적하며, 어느 시점 이후는 새로 아이를 낳기보다 기존의 아이 및 손자에게 자원을 투자하는 편이 이롭기 때문에 폐경이 진화했다는 '좋은 어머니(할머니) 가설'을 제시했다. 자식을 낳지 못하면 번식적 가치는 전혀 없기 때문에 진화적으로 이런 시기까지 개체를 유지한다는 것은 자원 낭비다. 하지만 인간 여성은 그렇지 않다. 그 이유는 인간의 출산이 특히 위험하기도 하거니와, 인간 아이를 돌보는 데는 매우 오랜 시간이 걸리기 때문에 유전자를 공유하는 가족을 돌보는 편이 출산보다 더 득이 되기 때문이라는 것. 아마 윌리엄즈가 '가족 이타주의'라 할 수 있는 이 내용을 더 파고들었다면, 친족 선택(kin selection)을 정립한 해밀턴의 업적을 선취할 수 있었을 것이다. 이 설은 아직 논란이 좀 있다. 현재의 수렵 채집 부족의 조사 결과 이 가설을 명확히 지지하는 결과가 나오지 않았기 때문이다. 원시 농경정착 부족들은 조부모가 손자손녀들을 돌보는 예가 많으나, 원시 수렵유목 부족에선 노인들을 가차없이 버리고 경시하는 일이 흔해 생활양식에 따라서 서로 다른 양극단의 결과가 관측되고 있다.

현재 이 예측들은 기본적으로 거의 다 맞아 들어간다고 알려져 있다. 특히 초파리를 갖고 수명 후반에만 번식시켜서 수명을 2배 이상 늘린 실험과[16], 섬에 고립된 주머니쥐 집단의 노화가 늦어졌음을 증명한 실험이 유명하다. 초파리만 실험했을 땐 포유류에서 아직 확인할 수 없다고 즉 인간과 그나마 비교할 대상도 없다고 무시하던 과학자들도 주머니쥐 실험에선 그 성과를 인정하지 않을 수 없었다. 섬에는 포식자가 없기 때문에, 주머니쥐처럼 작은 생물이 더 오래 번식할 수 있다. 따라서 생애 후반기가 번식에서 차지하는 비중이 커져 노화가 늦어진다. 여기서 말하는 노화는 수명 뿐 아니라 전반적인 노화진행 정도까지 포함하는데 진행 정도를 밝혀낸 방법이 뭐냐 하면 힘줄 비교.

그 외에도, 예쁜꼬마선충을 연구한 결과 특정 단백질(샤페론)이 많이 만들어져서 오래 사는 개체는 자손의 수가 현저하게 떨어진다는 연구 결과도 있다.

2.4. 유전적 요인

노화는 유전자의 영향을 크게 받지 않음이 빍혀졌다. 남성인 경우 유전적 요인이 0.26%, 여성의 경우 0.23%만이 유전적 요인이 영향을 준다.[17] 또한 캘리코[18]와 세스리닷컴의 협력 연구 결과 부부로 연결된 친족끼리의 평균 수명이 매우 비슷하다는 것을 확인하였다. 이는 주로 사람들이 비슷한 소득수준에 있고, 체형이나 습관, 식생활 등이 비슷한 사람과 혼인하기 때문이다.

2.5. 노화 극복과 오해

21세기에 접어들며 노화에 대한 이해도가 깊어졌다. 그 결과 현대의학은 노화의 원인을 크게 다음과 같이 구분한다.[19]
파일:gr1.jpg
1. 신호전달오류[20]
2. 유전자 불안정
3. 텔로미어 길이 감소
4. 후성유전적 변형
5. 단백질 안정성 감소
6. 불규칙적 영양소 인식
7. 미토콘드리아 기능 저하
8. 세포 노화
9. 줄기세포 고갈[21]

위 9가지 요인 중 가장 연구가 많이 이루어지는 분야는 텔로미어, 줄기세포고갈, 후성유전적 변형이다. 아직까지 9가지 요인들 중 한 가지라도 완벽하게 정복된 사항은 없다.

2.5.1. 노화 극복

파일:상세 내용 아이콘.svg   자세한 내용은 안티에이징 문서
#!if (문단 == null) == (앵커 == null)
를
#!if 문단 != null & 앵커 == null
의 [[안티에이징#s-|]]번 문단을
#!if 문단 == null & 앵커 != null
의 [[안티에이징#|]] 부분을
참고하십시오.
어떻게 노화를 치료하는가

2.5.2. 노화에 대한 오해들

2.5.2.1. 노화의 속도는 일정하다?
그렇지 않다. 건강 상태에 따라 노화가 빨라질 수도, 느려질 수도 있으며 수명도 그에 따라 짧아지거나 늘어난다. 다만 위의 개요 문단과 자연계의 노화 현상 문단에서 설명한 것과 같이 MRDT(Mortality Rate Doubling Time)를 기준으로 볼 경우 환경에 따른 차이는 통계적으로 미미하고 거의 유전자의 고유 특성처럼 나타난다. 인간의 경우 지난 수백 년 간 평균 수명은 두 배로 늘어났지만 성(性)적 성숙 시점 이후의 MRDT는 적어도 현재까지는 거의 변하지 않았다.

또한 2019년 12월, 과학학술지 <네이처 메디신>에 발표된 미국 스탠퍼드대 연구진의 논문에 따르면, 단백질 수치로 본 노화 그래프는 선형 곡선이 아닌 세 개의 뚜렷한 꼭지점을 형성했다. 연구진은 젊은이로부터 노년까지 18~95세에 이르는 4263명의 혈액에서 액체 성분인 혈장을 분리한 뒤, 여기에서 2,925가지의 혈장 단백질을 분석했다. 과학자들이 알아낸 노화 촉진 시기는 34살, 60살, 78살이었다. #

반면 정신면에선 뇌신경을 기반으로 9세, 32세, 66세, 83세에 4번의 성장+노화를 겪는다는 분석이 올라왔다.
2.5.2.2. 노화는 질병이다?
심리학과 인문학 일각에서는 성공적 노화 같은 개념을 내세우며 자연스러운 과정인 노화를 무턱대고 부정적으로 보지 말자는 주장이 존재한다.

하지만 의학과 생물학에 관점에서는, 베르너 증후군을 질병에 분류하게 되고, 기술 발전에 따라 노화가 실질적으로 극복이 가능한 대상으로 간주하는 개인과 집단이 생겨나며, 노화도 일종의 질병으로, 즉 건강 위험을 증가시키는 필연적인 요인이 아니라 넘어서야 할 위험 그 자체로 보는 시각이 늘어나고 있다. 노화 극복을 주장하고 불로불사를 연구하는 이들 중에서 노화를 이러한 시선으로 보는 사람을 많이 찾아볼 수 있기도 하다.

3. 인간 외 생물의 노화

자연계에서 노화는 매우 보편적이다. 노화가 거의 없거나 가끔 역행하는 것처럼 보이는 사례는 뉴스거리가 된다. 일부 히드라의 경우 시간에 따라 사망률이 감소하기도 했다고 한다. 이론적으로는 영원히 살 수도 있다고 해서 semi-immortal 이라고도 한다.

심지어 단세포 동물 같은 경우에도 관찰된다. 학자들이 곤충부터 척추동물까지 다양한 동물들을 경험적으로 관찰하여 얻은 결과, 일단 성적으로 성숙기에 들어선 동물들에서는 시간에 따라 대개 기하급수적으로 사망률이 증가한다는 것을 발견했다. 이 결과는 19세기에 영국의 보험 통계사 벤자민 곰퍼츠(Benjamin Gompertz)가 처음 발견했기 때문에 곰퍼츠 곡선이라 부른다. 동물 종에 따라 달라지는 것은 이 곡선의 경사, 정확하게 말해 X축을 시간으로 놓고 Y축을 사망률의 로그 값으로 놓았을 때 그래프의 기울기다. 이는 사망률이 2배가 되는 시간으로 규정할 수 있는데[22], 놀라운 것은 환경에 따라 사망률 자체는 변화가 크지만[23] 사망률이 2배가 되는 시간은 거의 차이가 없었다는 점이다. 이 때문에 사망률이 2배가 되는 시간을 노화 속도의 기준으로 삼는다. 인간은 대략 8년이다. 국가에 따라 차이는 있지만, OECD 국가에선 거의 7~8년 정도로 관찰된다.

3.1. 세균

현재는 박테리아에서도 노화현상이 나타난다고 알려진다. 흔히 단세포의 경우는 생장을 위한 체세포분열(mitosis) = 생식을 위한 감수분열(meiosis)이다.

세균에서의 노화는 노화 요소가 비대칭적으로 딸 세포에게 감으로 인해서 발생한다. #1#2

세균의 노화는 전체 집단이 분열을 중단하는 것이 아니라, 전체 집단 중 노화 요소가 축적된 일부 개체가 분열을 중단하는 것을 의미한다.

Caulobacter crescentus와 같은 비대칭 분열 세균에서의 노화는 쉽게 이해가 갈 것이다. #1#2#3

그러면 대장균 (E. coli)처럼 대칭 분열을 하는 세균에서의 노화는 어떨까? 대장균의 경우 오래된 세포 극(cell pole)과 새로운 세포 극이 딸 세포에게 갈 때 균등하게 가지 않아 노화가 발생하는 것으로 보인다는 증거들이 있다. #1#2#3#4#5#6#7#8#9#10#11

대칭 분열을 하는 Schizosaccharomyces pombe도 대장균과 유사한 방식으로 노화를 일으킨다. #1#2#3#4

개개의 대장균이 매 세포 분열마다 사망률은 증가했지만, 매번 세포 분열에서 같은 성장 속도를 보여주었다는, 위의 연구 결과를 부분적으로나마 반박하는 연구 결과도 있다. #1#2#3#4

3.2. 식물

식물의 노화에 대해서는 아직도 제대로 알려지지 않았지만, 보통 식물 세포가 죽어도 비교적 안전하게 굳어서 조직 보호까지 하는 경우가 있는 것을 보면 감염 등 환경 악화나 조직 분화 오류, 영양분의 지나친 소진 등으로 기전이 악화되어 죽는 것으로 추정된다. 수명은 종마다 극단적으로 달라서 한해살이도 있는 반면 수백~수천 년을 사는 종도 있다.

3.3. 동물

동물 중에는 노년기가 없는 바닷가재 같은 종들도 있으며, 홍해파리, 작은보호탑해파리 같은 경우는 아예 노년기가 다가오면 다시 유생으로 되돌아가며 이론상 영원히 살 수 있다. 또한 벌거숭이두더지쥐는 다른 설치류에 비해 수명이 10배 길고, 죽을 때까지 노화하지 않는다.[24] 다만 일반적인 동물들은 인간에 비해 수명도 짧고 노화도 빠르다.[25]

4. 기타


[1] 해파리해삼 등의 강장동물들[2] 일본의 경우 노인 문제가 너무 심각하여 노화 연구 이외에도 인공장기 개발도 활발하며 인간 유전자가 포함된 유전자 변형 돼지의 생산에 대한 법적인 허가도 난 상태이다. 일본이 보수적인 국가임을 감안하면 이런 결단은 매우 이례적이다.[3] 정확히 말하자면 사멸해야 한다. 더 이상 복제도 안 되는 늙은 세포가 사멸하지 않고 남아있으면 도움도 되지 않고 문제만 일으킨다. 이를 좀비 세포라고 부른다. 이 역시 노화의 원인 중 하나이며, 의 원인으로도 알려져 있다. 코끼리나 고래처럼 거대한 체구에도 불구하고 암이 없는 동물들은 좀비 세포가 없음이 밝혀졌다. 이런 동물들은 고도로 발달된 면역계가 좀비 세포를 찾아내 전부 박멸한다고 한다.[4] 70번이라는 말도 있다.# 이런 경우 최대 1024배의 차이가 난다.[5] 성인의 신체를 구성하는 세포는 약 30~40조 개이므로, 인간이 평생 세포 복제를 통해 만들어낼 수 있는 세포의 수는 그 3~4만 배에 이르는 셈이다. 인간은 대략 3만 일 정도를 살며, 세포 분열을 통해 거의 매일 전신의 세포를 새것으로 교체할 수 있는 능력이 있다. 물론 이는 단순한 산수 계산으로 나온 답이며 실제로는 조직 유형에 따라 세포 분열 속도가 크게 다르다. 참고로 세포 분열을 활발히 하는 세포일수록 백금계 항암 치료에 취약하다. 대표적으로 모낭(털세포)은 백금 기반 항암 치료 중에 암세포와 함께 죽어나간다. 이는 암세포가 정상 세포보다 세포분열을 엄청나게 활발히 한다는 특징이 있으며, 이 특징을 이용해 암세포를 죽이는 것이 백금계 항암 치료이기 때문이다.[6] 저렇게 많은 세포가 분열하는 이유 중 하나는 그만큼 많은 세포가 죽기 때문이다. 아무 일 없이 빈둥대며 지내도 하루에 10에 달하는 세포가 죽고, 그 공백을 세포들이 자가분열을 하여 메꾼다. 여기까지 손을 쓰는 것은 오히려 독이다.[7] 세포 분열이 더 이상 불가능해지면 어떻게 되는지 도카이 촌 방사능 누출사고에서 이미 나와있다. 방사선에 의해 염색체가 손상되면서 세포들이 더 이상 분열할 수 없어 사멸하게 되는데, 인체의 설계도로 불리는 염색체가 방사선에 의해 손상되었기 때문에 새로운 세포가 더 이상 생성되지 않은데 노후화된 세포만 계속 떨어져나가 몸이 망가지기 시작하게 된다.[8] 노화세포는 주변 조직에 피해를 입혀 노화를 가속화시키는 세포이다. 그럼에도 같은 세포라서 공격할 수 없고 자살 명령 단백질도 충분히 생산할 수 없어 자살도 불가한 좀비세포이다.[9] 암세포 등이 면역세포의 눈을 피해 살아남는 것.[10] 후각은 미각의 80%를 결정한다.[11] 화살코 현상이 나타난다.[12] 비교하자면 과거의 20대 초반의 사상은 현재의 30대 이상쪽에 가까웠으며 현재의 20대 청년들은 확실히 대학생의 연장선같은 느낌이다.[13] 문서의 예시는 사망률을 낮추는 것으로 들었지만 그 외에도 생식 능력을 높이는 것도 포함된다.[14] "Pleiotropy, Natural Selection, and the Evolution of Senescence", Evolution, Dec. 1957, 11, 398~411. 한국어 번역도 인터넷에서 볼 수 있다.[15] 정확히 말하면, 선택의 효과가 생존률과 생식률의 곱에 비례한다. 나이가 들수록 자식을 더 많이 낳을 수 있는 경우가 있는데, 이러면 나이가 들어도 기하급수적으로 선택 효과가 떨어지지 않아서 노화 속도가 느려진다. 하지만 노화가 완전히 없어지기는 힘든데, 생식률이 연령에 따라 기하급수적으로 증가하지 않으면 시간적 효과가 없어지지 않기 때문이다. 이 논문의 서지 사항은 'The moulding of senescence by natural selection', J. Theoret. Biol., 1966, 12, p.12~45며, 한국어 번역도 http://fischer.egloos.com/6597367여기서 볼 수 있다.[16] 수명 후반에 번식하려면 그 때까지 개체를 살려 두는 유전자가 선택된다. 따라서 수명은 길어진다.[17] 『Minnesota Twin Study about heritability』[18] CALIfornia life COmpany[19] Carlos López-Otín의 The Hallmarks of Aging 참고[20] 좌상단 연두색부터 시계방향으로 서술[21] 분화능력 감퇴[22] 사망률 배가 시간(mortality rate doubling time), 보통 MRDT로 약칭[23] 인간의 경우 수렵 채집 시대의 사망률은 현재 OECD 국가들에 비해 모든 연령에서 적어도 수십 배는 되리라 추정한다.[24] 단 예외적으로 수컷은 평생 교미만 하다가 단명하는 편이다.[25] 인간은 보통 80~90년 정도 살 수 있는데, 자연계에는 극단적인 경우 그린란드상어처럼 250~500년 정도 살 수 있는 경우도 있지만(이놈들은 너무 수명이 길어서 아성체로 자라는 데만 100년은 걸리고, 성체가 되려면 거기서 50년이 더 걸린다.) 다수의 동물은 몇 년, 길어야 30년도 못 사는 경우도 많다.[26] 예를 들어 스타워즈, 스타트렉, 스타크래프트 시리즈 등의 작품에서도 인간은 그대로 노화하며, 아바타 시리즈에서도 암리타라는 물질의 도움 없이 인간의 과학기술만으로는 노화를 극복하지 못하는 모습을 보인다. 또한 세대 우주선이 등장하는 대부분의 작품들도 마찬가지이다. 스타크래프트의 프로토스나 스타워즈의 각종 종족 등 외계인들까지 확장해도 인간보다 수명이 길지언정 자연 수명을 초과하지 못하고 있다. 오죽하면 SF 매체들의 인류는 우주는 정복해도 노화는 정복하지 못한다는 말까지 있을 정도.[27] 예를 들어 해리 포터 시리즈에 등장하는 마법사의 경우 머글들보다 긴 평균 수명을 가지나, 노화는 똑같이 겪고, 각종 주술과 약물로도 회춘은 불가능하다.[28] 마치 2000년대 초반 이전에 만들어진 미래 배경 작품에서 스마트폰이 등장하는 사례가 드물고, 컴퓨터 모니터나 텔레비전으로는 대부분 CRT가 쓰이는 것과 비슷하다.[29] 예컨대 아바타 시리즈에서 지구에 역노화 기술이 있다면 판도라까지 암리타를 얻으러 갈 이유가 없어진다.

분류