수 체계 Number Systems | ||||||
{{{#!wiki style="margin:0 -10px -5px; min-height:calc(1.5em + 5px)" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-5px -1px -11px; word-break: keep-all" | 사원수 [math(\mathbb H)] · 팔원수 [math(\mathbb O)] | |||||
↑ 확장 ↑ | ||||||
복소수 [math(\mathbb C)] | ||||||
↑ 대수적 폐포, 행렬 표현, 순서쌍 구성 등 ↑ | 허수 [math(\mathbb{C} | |||||
실수 [math(\mathbb R)] | ||||||
↑ 완비화, 데데킨트 절단 등 ↑ | 무리수 [math(\mathbb{R} \setminus \mathbb{Q} = \mathbb I)] | |||||
유리수 [math(\mathbb Q)] | ||||||
↑ 곱셈의 역원 ↑ | 정수가 아닌 유리수 [math(\mathbb{Q} \setminus \mathbb{Z})] | |||||
정수 [math(\mathbb Z)] | ||||||
↑ 덧셈의 역원 ↑ | 음의 정수 [math(\mathbb{Z} \setminus \mathbb{N})] | |||||
범자연수 [math(\mathbb N_0)] | ||||||
↑ 자연수의 집합론적 구성 ↑ | ||||||
[math(0)] | ||||||
소수 [math(\mathbb P)] · 초실수 [math(\mathbb R^{\ast})] · 대수적 수 [math(\mathbb A)](대수적 무리수 [math(\mathbb{A} \cap \mathbb{I})]) · 초월수 [math(\complement {\mathbb A})] · 벡터 공간 [math(\mathbb V)] · 이원수 · 분할복소수 | }}}}}}}}} |
1. 개요
대수적 무리수는 계수가 유리수인[1] 다항방정식의 근이지만, 이 수 자체는 무리수인 실수이다. 쉬운 예시들은 다음과 같다.- [math(sqrt2)]: [math(2)]의 제곱근은 유리수 계수를 갖는 2차 방정식의 근이지만 무리수이다.
- [math(sqrt3)], [math(sqrt 5)]: 마찬가지로 유리수 계수를 갖는 2차 방정식의 근이지만 무리수이다.
- [math(rho)]: [math(x^3 = x+1)]의 실근
- [math(operatorname{BR}(3))]: [math(x^5+x+3=0)]의 실근
대수적 무리수의 존재는 수학에서 중요한 결과이다. 대수적 수는 유리수와 같은 방식으로 구성할 수 있음을 의미하므로 무리수가 얼마나 복잡할 수 있는지를 보여준다.
더 자세한 내용은 대수 참조.
[1] 다항식의 차수는 유한하므로 모든 계수를 정수로 만들 수 있다. 계수가 정수인 다항방정식의 근으로 정의해도 동일하다.