'''[[전기전자공학과|전기·전자공학 {{{#!wiki style="font-family: Times New Roman, serif; font-style: Italic; display: inline;"]]''' | |||
{{{#!wiki style="margin:0 -10px -5px; min-height: 26px; word-break:keep-all" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin:-6px -1px -11px" | <colbgcolor=#009><colcolor=#fff> 학문 | 기반 학문 물리학 (전자기학 (회로이론 · 전자 회로 · 논리 회로) · 양자역학 · 물리화학 · 열역학 · 응집물질물리학) · 화학 연관 학문 수학 (공업수학 · 수치해석학 · 위상수학 · 미분방정식 · 대수학 (환론 · 표현론) · 선형대수학 · 이론 컴퓨터 과학 · 컴퓨터공학 (프로그래밍 언어 (HDL · VHDL · C · C++ · Java · 파이썬 · 베릴로그)) · 재료공학 · 제어 이론 | |
공식 · 법칙 | 전자기 유도 · 가우스 법칙 · 비오-사바르 법칙 · 무어의 법칙 · 키르히호프의 법칙 · 맥스웰 방정식 · 로런츠 힘 · 앙페르 법칙 · 드모르간 법칙 · 페르미 준위 · 중첩의 원리 | ||
이론 · 연구 | 반도체 (P형 반도체 · N형 반도체) · 디스플레이 · 논리 회로 (보수기 · 가산기 · 플립플롭 · 논리 연산) · 전자 회로 · RLC 회로 · 역률 · DSP · 히스테리시스 곡선 · 휘트스톤 브리지 · 임베디드 시스템 | ||
용어 | 클럭 · ASIC · CPU 관련 (BGA · 마이크로아키텍처 · GPS · C-DRX · 소켓) · 전계강도계 · 축전기 · CMCI · 전송선 · 양공 · 도핑 · 이미터 · 컬렉터 · 베이스 · 시퀀스 | ||
전기 · 전자 관련 정보 | 제품 스마트폰 · CPU · GPU (그래픽 카드) · ROM · RAM · SSD · HDD · MPU · CCD · eMMC · USB · UFS · LCD · LED · OLED · AMOLED · IoT · 와이파이 · 스마트 홈 · 마그네트론 · 마이크 · 스피커 · 배터리 소자 집적 회로 · 다이오드 · 진공관 · 트랜지스터 (BJT · FET · JFET · MOSFET · T-FT) · CMOS · IGBT · 저항기 · 태양전지 · 연산 증폭기 · 사이리스터 · GTO · 레지스터 · 펠티어 소자 · 벅컨버터 | ||
자격증 | |||
전기 계열 | 기능사 전기기능사 · 철도전기신호기능사 기사 전기기사 · 전기산업기사 · 전기공사기사 · 전기공사산업기사 · 전기철도기사 · 전기철도산업기사 · 철도신호기사 · 철도신호산업기사 기능장 및 기술사 전기기능장 · 건축전기설비기술사 · 발송배전기술사 · 전기응용기술사 · 전기안전기술사 · 철도신호기술사 · 전기철도기술사 | ||
전자 계열 | 기능사 전자기기기능사 · 전자계산기기능사 · 전자캐드기능사 기사 전자기사 · 전자산업기사 · 전자계산기기사 · 기능장 및 기술사 전자기기기능장 · 전자응용기술사 | ||
기타 | 기능사 신재생에너지발전설비기능사(태양광) 기사 소방설비기사 · 신재생에너지발전설비기사(태양광) · 로봇소프트웨어개발기사 · 로봇하드웨어개발기사 · 로봇기구개발기사 | }}}}}}}}} |
[[컴퓨터공학|컴퓨터 과학 & 공학
Computer Science & Engineering
]]- [ 펼치기 · 접기 ]
- ||<tablebgcolor=#fff,#1c1d1f><tablecolor=#373a3c,#ddd><colbgcolor=#0066DC><colcolor=white> 기반 학문 ||수학(해석학 · 이산수학 · 수리논리학 · 선형대수학 · 미적분학 · 미분방정식 · 대수학(환론 · 범주론) · 정수론) · 이론 컴퓨터 과학 · 암호학 · 전자공학 · 언어학(형태론 · 통사론 · 의미론 · 화용론 · 음운론) · 인지과학 ||
하드웨어 구성 SoC · CPU · GPU(그래픽 카드 · GPGPU) · ROM · RAM · SSD · HDD · 참조: 틀:컴퓨터 부품 기술 기계어 · 어셈블리어 · C/C++ · C# · Java · Python · BIOS · 절차적 프로그래밍 · 객체 지향 프로그래밍 · 해킹 · ROT13 · 일회용 비밀번호 · 사물인터넷 · 와이파이 · GPS · 임베디드 · 인공신경망 · OpenGL · EXIF · 마이크로아키텍처 · ACPI · UEFI · NERF · gRPC · 리버스 엔지니어링 · HCI · UI · UX · 대역폭 · DBMS · NoSQL · 해시(SHA · 브루트 포스 · 레인보우 테이블 · salt · 암호화폐) · RSA 암호화 · 하드웨어 가속 연구
및
기타논리 회로(보수기 · 가산기 · 논리 연산 · 불 대수 · 플립플롭) · 정보이론 · 임베디드 시스템 · 운영 체제 · 데이터베이스 · 프로그래밍 언어{컴파일러(어셈블러 · JIT) · 인터프리터 · 유형 이론 · 파싱 · 링커 · 난해한 프로그래밍 언어} · 메타데이터 · 기계학습 · 빅데이터 · 폰노이만 구조 · 양자컴퓨터 · 행위자 모델 · 인코딩(유니코드 · MBCS) · 네트워크 · 컴퓨터 보안 · OCR · 슈퍼컴퓨터 · 튜링 머신 · FPGA · 딥러닝 · 컴퓨터 구조론 · 컴퓨터 비전 · 컴퓨터 그래픽스 · 인공지능 · 시간 복잡도(최적화) · 소프트웨어 개발 방법론 · 디자인 패턴 · 정보처리이론 · 재귀 이론 · 자연어 처리(기계 번역 · 음성인식) · 버전 (버전 관리 시스템 · Git · GitHub)
1. 개요
Signals and Systems신호와 그 신호를 다루는 시스템을 해석하는 방법을 배우는 과목이다.
시스템이라고 하면 라디오, 텔레비전, 핸드폰 등의 방송 통신 기기나 인공지능 같은 전기적 신호를 다루는 시스템이기도 하고, 로봇, 제어, 기계 같은 물리적인 시스템 등도 포함된다.
푸리에 해석(Fourier analysis), 라플라스 변환(Laplace transform), Z 변환(Z-transform) 등을 이용하여 연속시간(continuous-time) 및 이산시간(discrete-time) 신호 및 시스템을 해석, 표현하고 그 특성을 분석하는 법을 배우는 과목. 신호와 시스템의 기본 개념과 그 특성, 시간 영역(time domain) 함수(x(t))의 주파수 영역(frequency domain) 표현(X(f)), 선형 시불변(LTI) 시스템의 시간 및 주파수 영역에서의 표현, 시스템 전달함수(transfer function), 시스템 안정성(stability) 분석, 라플라스 변환, Z 변환 및 그 응용을 다룬다.
전기전자공학과, 컴퓨터공학과에서 주로 디지털 신호처리, 신호 및 시스템라는 이름으로 개설되어 있으며 신호와 시스템이라는 이름으로 개설되기도 한다. 또한 신호 및 시스템은 이후 배우게 되는 디지털신호처리(DSP)의 선수과목이므로 해당 커리큘럼을 잘 따르는 것이 중요하다.
센서, 제어, 통신과도 연관이 있다.
'아날로그' 신호를 '디지털'로 변환해서 받아들이고 분석하는 데 의의가 있으므로 현대에는 인간의 생명 활동으로 인해 발생하는 '생체 신호'를 분석하는 식으로 응용하기도 한다. 즉 의료기기를 이용한 질병의 진단에 필수적이며, 더 나아가서 영상 데이터 분석에도 광범위하게 쓰이고 있다.
2. 선형 시불변 시스템(LTI system)
선형성(linearity)과 시불변성(time-invariance)의 특성을 모두 만족하는 시스템으로, 간단히 LTI(linear and time-invariant) 시스템이라고도 한다.선형 시스템의 정의는 여타 다른 분야에서 '선형'의 정의와 마찬가지로 여러 인풋 신호들 [math( x_i)]에 대한 시스템의 아웃풋이 [math( y_i)]일 때 이 인풋의 중첩(superposition) 신호인 [math( \displaystyle x(t)=\sum_i c_i x_i(t))] 에 대한 출력이 [math( \displaystyle y(t)=\sum_i c_i y_i(t))]으로 나오는 시스템을 의미한다.
시불변 시스템은 같은 신호에 대하여 언제나 같은 반응을 하는 시스템이다. 즉 시간에 대한 평행이동을 제외하고는 같은 형태인 두 인풋 [math(x(t), x(t-\tau))]에 대하여 아웃풋 역시 각각 [math(y(t), y(t-\tau))]를 만족하는 시스템이다. 좀더 쉽게 설명하면 시불변 특성은 동기화된 시간변위(synchronized time shift)로 이해할 수 있다.
위 두가지 조건에 의하여 다음과 같이 인풋과 아웃풋을 컨볼루션(Convolution, 합성곱)으로 연결할 수 있게 된다.
[math( \displaystyle y(t)=x(t) * h(t) \equiv \int x(\tau)h(t-\tau) d\tau)]
3. 푸리에 해석(Fourier analysis)
시간 영역과 주파수 영역을 넘나들 수 있도록 도와주는 일련의 식과 특성들. 당초 푸리에는 열전도를 설명하기 위한 미분방정식을 해석하기 위해 만든 것이다.우리가 생활에서 볼 수 있는 흔한 푸리에 해석은 오디오나 미디어 플레이어의 시각화 기능 중 하나인 오르락 내리락하는 막대기이다. 2진 데이터를 활용한 푸리에 해석은 우리 삶에서 3G, LTE 등의 모습으로 사용되고 있다.
또한 CTFT의 일반화 버전인 라플라스 변환도 있다.[1]
4. Z 변환
간단히 말해 이산 시간 영역에서 적용이 가능하도록 변형한 라플라스 변환이다. 따라서 대부분의 성질이 라플라스 변환과 유사하다.5. 기타
다수의 전자공학과 커리큘럼은 신호 및 시스템의 다음 과목으로 디지털신호처리(DSP)를 개설하고 있으며, 여기에서 이산시간 푸리에변환과 이산 푸리에변환 그리고 디지털 필터에 대해 학습하게 된다.오펜하임(Alan V. Oppenheim)의 '이산시간 신호처리' 교재가 유명하다. 3판 번역본이 절찬리에 판매되고 있다. 원서와 달리 본문 내용과 연습문제 쪽에 오타가 산재해 있으니 유의하자.
[1] [math(s \triangleq \sigma + j \omega)]이고 입력 신호가 [math(x(t))]일 때 [math(x(t)e^{-\sigma t})]의 CTFT라고 생각하면 된다. 참고로 이는 기존에 CTFT가 존재하지 않던 입력 신호에 대해서도 수렴영역(ROC: Region Of Convergence)만 잘 잡아주면 해당 신호를 주파수 영역으로 변환해서 해석하는 것을 가능하게 해준다.