토론 합의사항 | ||
{{{#!wiki style="margin: 0 -10px -5px; min-height: 26px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -6px -1px -11px" | * 분야에 따라 수용액의 밀도를 [math(\rm1\,g/mL)]로 근사하여 [math(\rm ppm)]과 [math(\rm mg/L)]를 같은 단위로 사용하고 있다는 사실과 이에 대한 구체적인 설명(수식 등)을 서술함. | }}}}}}}}} |
<colbgcolor=#000> 과학 연구 · 실험 Scientific Research · Experiment | ||||
{{{#!wiki style="margin: 0 -10px -5px" {{{#!folding [ 펼치기 · 접기 ] {{{#!wiki style="margin: -6px -1px -11px" | <colbgcolor=#000><colcolor=#fff><rowcolor=#000,#fff> 배경 | 과학적 방법 | ||
기반 | 수학(미적분학 · 선형대수학 · 미분방정식) · 통계학(수리통계학 · 추론통계학 · 기술통계학) | |||
연구·탐구 | 논증(귀납법 · 연역법 · 유추(내삽법 · 외삽법)) · 이론(법칙 · 공리 · 증명 · 정의 · 근거이론 · 이론적 조망) · 가설 · 복잡계(창발) · 모형화(수학적 모형화) · 관측 · 자료 수집 · 교차검증 · 오컴의 면도날 · 일반화 | |||
연구방법론 | 합리주의 · 경험주의 · 환원주의 · 복잡계 연구방법론 · 재현성(연구노트) | |||
통계적 방법 | 혼동행렬 · 회귀 분석 · 메타 분석 · 주성분 분석 · 추론통계학(모형(구조방정식) · 통계적 검정 · 인과관계와 상관관계 · 통계의 함정 · 신뢰도와 타당도) | |||
측정·물리량 | 물리량(물리 상수 · 무차원량) · 차원(차원분석) · 측도 · 단위(단위계(SI 단위계 · 자연 단위계) · 단위 변환) · 계측기구 · 오차(불확도 · 유효숫자 · 과학적 기수법) | |||
실험 | 실험설계 · 정성실험과 정량실험 · 실험군과 대조군 · 변인(독립 변인 · 조작 변인 · 종속 변인 · 변인 통제) · 모의 실험(수치해석) · 맹검법 · 사고실험 · 인체실험 · 임상시험 · 실험 기구 | |||
연구윤리 | 뉘른베르크 강령 · 헬싱키 선언 · 연구투명성 · 연구 동의서 · 연구부정행위 · 표절(표절검사서비스) · 편향 · 문헌오염 · 자기교정성 · 연구윤리위원회 | |||
논문·과학 공동체 | 소논문 · 리포트 · 논문제출자격시험 · 연구계획서 · 형식(초록 · 인용(양식 · 참고문헌) · 감사의 글) · 저자 · 학회 · 세미나 · 학술대회 · 동료평가 · 지표 · 학술 데이터베이스 · 게재 철회 · 학제간 연구 | |||
철학 관련 정보 · 연구방법론 관련 정보 · 수학 관련 정보 · 자연과학 관련 정보 · 물리학 관련 정보 · 통계 관련 정보 · 사회과학 조사연구방법론 | }}}}}}}}} |
1. 개요
無次元量 / dimensionless quantity도량형학(metrology)에서 쓰이는 용어로, 차원 분석 시 모든 차원의 지수가 [math(0)]이 되는 물리량을 가리킨다. 수학적으로 곱셈·나눗셈의 항등원이므로 차원 기호는 [math(\sf 1)]로 나타낸다.
물리량은 수와 단위의 곱으로 이루어져있으므로 단위가 없는 수학 상수들은 [math(1)]이라는 단위가 곱해진 물리량으로 간주할 수 있어 무차원량이며, 단위는 미지수의 계수 [math(1)]을 생략해서 나타내듯이 [math(1)]이 생략된 물리량으로 간주할 수 있으므로 차원이 없는 단위 역시 무차원량이다.
기하학의 성질인 공간을 나타내는 측도로써의 차원과는 의미가 많이 다르다.
2. 특징
어떤 물리량 [math(Q)]의 차원 [math(\dim Q)]는 7가지의 기본 차원(base dimension), 즉 길이([math(\sf L)]), 질량([math(\sf M)]), 시간([math(\sf T)]), 전류([math(\sf I)]), 온도([math(\sf\Theta)]), 물질량([math(\sf N)]), 광도([math(\sf J)])를 각각 밑으로 하는 지수의 곱으로 나타낼 수 있다. 즉[math(\dim Q = {\sf L}^\alpha{\sf M}^\beta{\sf T}^\gamma{\sf I}^\delta{\sf\Theta}^\epsilon{\sf N}^\zeta{\sf J}^\eta)] |
단, 이들 기본 차원으로 나타낼 수 없거나 차원 분석이 불가능한 단위들(특히 셈 측도에 해당하는 것들[1])은 통상적으로 무차원량으로 약속한다.
3. 예시
3.1. 수학 상수
[math(1)], 원주율 [math(pi)], 자연로그의 밑 [math(e)]을 포함한 모든 수학 상수는 무차원량이다. 허수 단위 [math(i)]를 포함한 사원수의 다른 허수 단위 [math(j)], [math(k)]도 무차원량이며 이를 확장한 체계의 다른 단위들 역시 무차원량이다.3.2. 단위벡터
단위 벡터는 어떤 벡터의 단위를 포함한 벡터의 크기(물리량 값)로 원래 벡터의 성분을 나눈 것이기 때문에 단위도 없으며 따라서 무차원량이다.[2] 가령 속도 벡터 [math(\bf v)]를 [math({\bf v} = (v_x,\,v_y,\,v_z))]로 나타내면 각 성분 [math(v_i)]는 [math(\bf v)]와 똑같은 단위와 차원을 공유하는데 속도의 단위 벡터 [math({\bf\hat v})]는 [math({\bf\hat v} = \cfrac{\bf v}{\|{\bf v\|}} = \biggl(\cfrac{v_x}{\|{\bf v}\|},\,\cfrac{v_y}{\|{\bf v}\|},\,\cfrac{v_z}{\|{\bf v}\|}\biggr))]로 정의되며, 단위 벡터의 각 성분은 차원이 약분되어 [math(\sf1)]이 되므로 단위 벡터는 무차원량이다.3.3. 지수함수 / 로가리듬
로가리듬은 지수의 역함수, 즉 지수함수의 지수에 해당하기 때문에 항상 무차원량이다. 따라서 이들 수식을 바탕으로한 단위 역시 모두 무차원량이다. 거꾸로 지수의 결과값 역시 무차원량이기 때문에 각 로가리듬의 정의역에는 무차원량이 대입돼야 한다.좀 더 엄밀하게는 각 함수의 테일러 전개에 차원분석을 적용하면 된다. 먼저 [math(e^x)]는
[math(\begin{aligned} e^x &= \sum_{n=0}^\infty \frac{x^n}{n!} \\ &= \frac1{0!} + \frac x{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \end{aligned})] |
밑이 다른 지수함수나 로그는 밑 변환 공식 [math(a^x = e^{x\ln a})], [math(\log_ax = \cfrac{\ln x}{\ln a})]에 차원분석을 적용하면 되는데 [math(\ln a)]가 수학 상수로서 무차원량이므로 [math(a^x)], [math(\log_ax)] 역시 무차원량이 되며 모든 지수함수와 로그함수는 무차원량이다.
- 네퍼 [math(\rm Np)] - 분율에 자연로그를 취한 것의 단위.
- 데시벨 [math(\rm dB)] - 분율에 상용로그를 취한 것의 단위. 벨([math(\rm B)])의 [math(1/10)].
- [math(rm pH)] - 수소 이온의 활동도의 역수에 상용로그를 취한 것. 이 밖에도 [math(\rm pOH)], 산이온화상수 [math({\rm p}K_a)], 염기이온화상수 [math({\rm p}K_b)], 등전점 [math(\rm pI)] 등 로가리듬을 이용한 모든 물리량 포함.
3.4. 삼각함수 / 역삼각함수
삼각함수는 반지름이 [math(r)]인 원을 이용해서 정의할 수 있는데, 원은 차원과 단위가 같은 평면상에 존재하므로 그 원 위의 좌표 [math((x,\,y))]를 이용하여[math(\begin{aligned} \cos\alpha &= \frac xr \\ \sin\alpha &= \frac yr \\ \tan\alpha &= \frac yx\end{aligned})] |
이때, [math(\alpha)]의 범위를 주욧값으로 제한하면 가령 [math(\alpha = \arcsin\cfrac yr)]로 나타낼 수 있는데 역삼각함수 역시 다음과 같이 테일러 급수로 전개할 수 있으며
[math(\begin{aligned} \arcsin\frac yr &= \sum_{n=0}^\infty \frac{(2n-1)!!}{(2n)!!{\cdot}(2n+1)}{\left(\frac yr\right)}^{2n+1} \\ &= \frac yr + \frac16{\left(\frac yr\right)}^3 + \frac3{40}{\left(\frac yr\right)}^5 + \frac5{112}{\left(\frac yr\right)}^7 + \cdots\end{aligned})] |
[math(\theta_\degree : 360\degree = \theta : 2\pi{\rm\,rad} \Leftrightarrow \cfrac{\theta_\degree}{180\degree} = \cfrac\theta{\pi\rm\,rad})] |
따라서 삼각함수를 각도 물리량으로 나타낼 경우 [math(\sin(\theta/{\rm rad}))]와 같이 [math(\rm rad)]으로 나눈 각도로 나타내는 게 정확한 표기이다.
3.5. 일부 초월함수들
상기 네 함수가 차원분석상으로 무차원량이므로 이 함수들을 이용해서 정의되는 초월함수들 역시 무차원량이다.- 지수함수 계열: 쌍곡선 함수, 정규분포 함수, 지수 적분 함수, 쌍곡선 적분 함수 등
- 로그함수 계열: 폴리로그함수, 로그 적분 함수 등
- 삼각함수 계열: 싱크함수, 삼각 적분 함수, 프레넬 적분 함수, 바이어슈트라스 함수, 볼테라 함수 등
3.6. 계수량(counting quantity)
- 개수를 세는 데에 관련된 단위들은 모두 무차원량이다. 자세한 것은 셈 측도 참조.
- 분자생물학에서 핵산의 염기 개수를 나타내는 베이스([math(\rm b)]) 혹은 염기쌍의 개수를 나타내는 베이스페어([math(\rm bp)]).
- 양자역학에서의 축퇴(degeneracy).
3.7. 분율/배율
단위가 같은 두 물리량의 율이기 때문에 분율이나 배율에 속하는 모든 단위는 무차원량이다.
- 분율
- % - 전체를 [math(100)]으로 놓았을 때의 비율.
- ‰ - 전체를 [math(1\,000)]으로 놓았을 때의 비율.
- ‱ - 전체를 [math(10\,000)]으로 놓았을 때의 비율.
- ppm, ppb, ppt - %, ‰을 확장한 개념으로 [math(\rm1\,ppm)]은 전체를 [math(10^6 = 100)]만으로 놓았을 때의 비율을 의미하며 [math(\rm ppb)], [math(\rm ppt)]는 국가에 따라 그 의미가 다르다. milliard, billiard가 포함된 소위 long scale 체계를 쓰는 나라[6]에서는 [math(\rm1\,ppb = 1/10^{12})](1조분의 1), [math(\rm1\,ppt = 1/10^{18})](100경분의 1)을 의미하지만 milliard, billiard가 없는 소위 short scale 체계를 쓰는 나라[7]에서는 [math(\rm1\,ppb = 1/10^9)](10억분의 1), [math(\rm1\,ppt = 1/10^{12})](1조분의 1)을 의미한다. 이 때문에 국제단위계에서는 [math(\bf ppb)], [math(\bf ppt)]의 사용을 허용하지 않는다.
단, 분야에 따라 [math(\rm ppm)]을 무차원이 아닌 밀도의 단위([math(\rm\textμg/mL = mg/L = g/m^3)] 등)로 사용하는 경우가 있다. 국제단위계의 정의에 의하면 둘은 혼용될 수 없지만, 묽은 수용액을 다루는 상황에서는 물의 밀도를 [math(\rm1\,g/mL)]로 근사할 수 있으므로 [math({\rm\textμg/mL}\approx{\rm\textμg/g} = 10^{-6} = {\rm ppm})], 즉 [math(\rm ppm)]과 [math(\rm\textμg/mL)]을 동일한 단위으로 쓰는 것이므로 데이터를 읽을 때 주의를 요한다. - 할, 푼, 리 - 척관법 기반의 분율. 주로 야구에서 타율을 나타낼 때 쓰인다.
- 배율
3.8. 각, 입체각
- 라디안([math(\rm rad)]) - 반지름에 대한 호의 길이의 비로 나타낸 평면각의 단위.
- 스테라디안([math(\rm sr)]) - 반지름 제곱에 대한 구 표면의 넓이 비로 나타낸 입체각의 단위.
3.9. 학문 분야에 따른 무차원량
3.9.1. 경제학
- 대체탄력성 [math(\rho)]
3.9.2. 광학
- 굴절률 [math(n)]
3.9.3. 물리화학
- 이온화도 [math(\alpha)]
- 활동도 [math(a)]
- 활동도 계수 [math(\gamma)]
- 화학 반응의 모든 평형상수 [math(K)]
3.9.4. 생물학
- 베버의 법칙에서 베버 상수 [math(k)]
3.9.5. 소립자 물리학
- 미세 구조 상수 [math(\alpha)]
3.9.6. 약리학
3.9.7. 역학
- 반발계수 [math(e)] - 충돌 전후 상대속도의 비율.
3.9.8. 유체역학, 열 및 물질전달
무차원 수가 넘쳐난다. 자세한 내용은 전공서적을 참고 바란다.- 레이놀즈 수 [math(\rm Re)] - 유체의 관성력과 점성력의 비율. 두 물리량의 단위는 [math(\rm Pa = kg/(m{\cdot}s^2))]이다.
- 레일리 수 [math({\rm Ra}_x)] - 확산에 의한 열 전달 속도와 대류에 의한 열 전달 속도의 비율.
- 마하 수 [math(\rm Ma)] - 음속에 대한 유체 흐름의 속도 비.
- 프루드 수 [math(\rm Fr)] - 중력/관성력
- 웨버 수 [math(\rm We)]
- 프란틀 수 [math(\rm Pr)] - 운동량 확산률과 열확산률의 비, 유체의 특성으로 유체의 종류와 유체의 온도에 의해 달라지며 대류열전달계수를 계산하는 데 사용된다.
3.9.9. 일반화학
3.9.10. 재료공학
- 푸아송 비 [math(\nu)]
3.9.11. 전자기학
4. 관련 문서
[1] 몰 제외. 몰은 셈 측도이지만 차원이 [math(\sf N)]이다.[2] 즉, 단위벡터는 크기가 1일뿐만 아니라 도량형학적으로도 차원이 [math(\sf1)]이며 그 단위는 [math(1)]이라고 볼 수 있다.[3] 다른 역삼각함수도 위와 같은 테일러 전개로 나타낼 수 있으며 순수한 수치의 합으로 이루어져있다.[4] 삼각함수를 호도법 각도로 나타낼 때 [math(\rm rad)]을 안 쓰는 이유가 바로 이것이다![5] 이는 양 방정식(quantity equation)은 단위에 관계없이 방정식의 꼴이 일정하지만 물리량을 단위로 나눈 수치 방정식(numerical-value equation)은 단위 환산식이 방정식에 본격적으로 드러나기 때문에 무슨 단위를 쓰느냐에 따라 방정식의 꼴이 바뀐다는 일반적인 법칙이 여전히 성립한다는 것을 보여주는 부분이기도 하다. 즉 삼각함수 및 역삼각함수 자체가 수치 방정식이기 때문에 무슨 단위를 쓰느냐에 따라 식의 형태를 다르게 써야한다.[6] 유럽 등[7] 미국 등[8] 단, '회전량'이 정말 무차원량인지에 대해서는 학계에서도 이견이 있다. 국제단위계에서는 [math(\rm rad = 1)], [math(\rm sr = 1)]이라고 규정하는데 이는 [math(\rm sr = rad^2)]이라는 관계를 고려하면 수학적으로 둘은 필연적으로 같아질 수 밖에 없어 모순이 발생한다. 이 밖에도 물리학적으로는 분명 다른 물리량인 진동수와 각진동수가 같은 차원 [math(\sf T^{-1})]을 갖는다든지, 국제단위계의 지침과는 달리 실생활에선 휘도와 조도를 구분하기 위해 [math(\rm sr)]을 생략하지 않는 용법 등 이러한 문제점이 모두 각도와 관련된 물리량에서 나타난다. 자세한 것은 해당 문서의 항목 참고.[9] [math(E = m)]같은 괴악한 수식을 쓸 수 있는 것도 사실 에너지([math(E)])와 질량([math(m)])이 엄밀하게는 무차원량으로 규격화된(즉, 단위가 없는) [math(E_{\rm N})], [math(m_{\rm N})]이기 때문이다.(무엇으로 규격화됐는지는 사용하는 단위계에 따라 다르다. 자세한 것은 자연 단위계 참조) 그러나 자연 단위계를 쓰는 대부분의 학자들은 이 표기가 매우 번거롭기 때문에 규격화 표기를 생략한다.