----- (가)에서, [math([0,\,2])]에서는 원 함수와 절댓값 함수의 정적분이 반수 관계이므로 이 구간에서 [math(f(x)\leq0)]이다. 또한 (나)에서, [math([2,\,3])]에서는 원 함수와 절댓값 함수의 정적분이 같으므로 이 구간에서 [math(f(x)\geq0)]이다. [math(f(0)=0)]이므로, 모든 단서를 종합하면 이차함수 [math(f(x))]의 그래프는 다음과 같은 형태가 된다.
따라서 [math(f(x)=ax(x-2)\;(a>0))]로 놓을 수 있고, (가)의 정적분 값을 활용하면 [math(a)]의 값은 다음과 같다.
[문제]함수 [math(f(x))]의 역함수가 [math(g(x))]이고, [math(f(0)=0)], [math(f(3)=7)]일 때, 정적분 [math(\displaystyle\int_0^3 f(x)\;{\rm d}x+\displaystyle\int_0^7 g(x)\;{\rm d}x)]의 값을 구하시오.
[풀이 보기]
-----
함수 [math(f(x))]가 점 [math((0,0))]과 [math((3,7))]을 지나고 역함수가 존재하므로 [math(f(x))]는 증가함수이다. 따라서 그래프의 개형은 위 그림과 같다.
[math(\displaystyle{\color{purple}\int_0^7 g(x)\;{\rm d}x})]와 빨간색 영역의 넓이는 같으며, [math(\displaystyle{\color{turquoise}\int_0^3 f(x)\;{\rm d}x})]는 초록색 영역이므로, 구하려는 값인 초록색 영역과 보라색 영역의 넓이의 합은 초록색 영역과 빨간색 영역의 넓이의 합과 같다. 이는 곧 직사각형의 넓이와 같으므로 [math(3 \cdot 7=21)]
사실 [math(f(x)=\dfrac{7}{3}x)]로 놓아버리면 그래프가 직선이 되어 굳이 정적분을 도입하지 않아도 삼각형의 넓이의 합으로도 풀 수 있다. 그러나 만약 풀이까지 써야 한다면 [math(f(x))]의 그래프가 무조건 직선이라는 보장이 없으므로 그런 풀이로는 제대로 된 점수를 받을 수 없다.
문제 1: [math(\displaystyle{\lim\limits_{n\to\infty}\sum_{k=1}^n \left(1+\displaystyle\frac{5k}{n}\right)^2\displaystyle\frac{5}{n}})]를 정적분의 꼴로 고치시오.
【 정답 및 해설 (펼치기 · 접기) 】
정적분의 정의를 상기하면서 식의 어떤 자리에 어떤 수나 문자가 있는지 따져 보면 된다.
여기에서, [math(x_k)]가 [math(x)]로 변하고 [math(\Delta x)]가 [math({\rm d}x)]가 된다는 점을 상기해야 한다. [math(\Delta x)]란 본디 [math(\displaystyle\frac{b-a}{n})]의 꼴이므로 문제의 식에서는 [math(\displaystyle\frac{5}{n})]라고 할 수 있다. 그러면 [math(x_k=a+\displaystyle\frac{b-a}{n}k=1+\frac{5k}{n})]가 된다. 따라서 문제의 식에 있는 [math(\left(\displaystyle 1+\frac{5k}{n}\right)^2)]을 그대로 [math(\displaystyle x^2)]으로 바꿔서 쓰면 된다.
이제 위끝과 아래끝을 결정할 차례이다. 앞서 말했듯이 [math(x_0=a)], [math(x_n=b)]이므로 [math(a=1+\dfrac{5⋅0}{n}=1)], [math(b=1+\dfrac{5⋅n}{n}=6)]이다. 따라서 정적분의 꼴로 고치면
[math(\displaystyle\int_1^6 x^2\,{\rm d}x)]
한편 대학 과정의 스틸체스 적분을 사용하면 의외로 쉬워지는데, 적분구간을 [math(mathbb N)], 미분계수를 [math({\rm d}\lfloor x\rfloor)]로 두고 본래 식 그대로 꼬라박으면 된다.[1] 문제 출제자 입장에선 무슨 지거리야 싶겠지만, 저런 꼴의 적분은 해석적 정수론에서 많이 쓰므로 나름대로 일리는 있다.[2]
문제 1에서는 [math(\left(1+\dfrac{5k}{n}\right)^2\dfrac{5}{n})] 식으로, [math(\dfrac{5}{n})]가 두 번 보였기 때문에 그대로 [math(\Delta x=\dfrac{5}{n})]로 놓으면 [math(x_k)]까지 순조롭게 정해졌었다. 그러나 문제 2는 [math(f\left(1+\dfrac{4k}{n}\right)\dfrac{1}{n})] 식으로, [math(\dfrac{4}{n})]도 보이고 [math(\dfrac{1}{n})]도 보인다. 이 경우 둘의 수를 통일해야 문제 1과 같이 정적분의 꼴로 바꿀 수가 있을 것이다. 그러면 [math(\dfrac{4}{n})]로 통일할까, [math(\dfrac{1}{n})]로 통일할까? 당연히 [math(\dfrac{4}{n})]로 통일해야 한다. 그러는 편이 비교도 안 되게 쉽기 때문이다.
[math(a)]의 값을 찾을 수 있겠는가? [math(\dfrac{k}{n})] 바로 앞에는 [math(\boldsymbol {0+})]가 생략되어 있는 것으로 보면 [math(a=0)]임을 알 수 있다. [math(b-a=1)]이므로 [math(b=1)]이고 [math(\Delta x=\dfrac{1}{n})]이다. 그러면 자연스럽게 [math(x_k=\dfrac{k}{n})]가 된다. 따라서 정적분의 꼴로 고치면
사실 이 상태로는 정적분으로 나타낼 수가 없다. 앞서 문제를 풀어 보았듯이, [math(\dfrac{b-a}{n}k)]와 [math(\dfrac{b-a}{n})]의 꼴이 나와야 [math(\Delta x)]나 [math(x_k)]를 정하기 쉬우므로 그에 맞게 식을 변형해 보자. 분모와 분자를 [math(n^4)]으로 나누는 것이다.
1번은 함수 [math(y=tf(t))][3]를 1부터 [math(x)]까지 정적분한 값을 뜻한다. 2번은 함수 [math(y=af(a))]라는 함수를 1부터 [math(x)]까지 정적분한 값을 뜻한다. 3번 역시 마찬가지로 함수 [math(y=xf(x))]를 1부터 [math(x)]까지 정적분한 값을 뜻한다. 그러나 3번이 1번 및 2번과 다른 점은, 문자 [math(x)]가 상수라는 것이다! 잘 이해가 안 되면 다음 그래프를 보자.
여기에서 첫째 그래프와 둘째 그래프를 보면, 모든 것이 똑같고 가로축의 변수를 표기한 문자만이 다르다. 가로축의 변수를 무슨 문자로 쓸 것인지는 완전히 임의적인 것이기에, [math(a)]로 쓰든 [math(t)]로 쓰든 '꽦'으로 쓰든 하등 문제는 없고, 실질적인 계산에서도 문자만 달라질 뿐, 그 달라진 문자가 계산에 전혀 영향을 주지 않는다. 그러나 셋째 그래프는 이야기가 다르다. 그래프의 함수식이, 가로축의 변수 [math(t)]에 관한 식이 아니고 아예 새로운 문자 [math(x)]에 관한 식이기에 이는 상수함수이다. [math(x=1)]이면 [math(y=f(1))]을 1부터 1까지 정적분한 값을 구하고, [math(x=100)]이면 [math(y=100f(100))]을 1부터 100까지 정적분한 값을 구하는 것이다. 상수함수는 [math(x)]축과 평행하므로, 정적분으로 구하고자 하는 도형은 항상 직사각형이 된다. 따라서 [math(y=\displaystyle\int_1^x xf(x)\,{\rm d}t)]는 [math(y=x(x-1)f(x))]나 다름없다.
세 그래프 모두, [math(x)]의 값에 따라 빨간색 부분의 넓이([math(y)]값)이 달라지므로, 곧 정적분의 값도 달라짐을 알 수 있을 것이다. 따라서 1번, 2번, 3번 함수 모두 [math(\boldsymbol x)]에 관한 함수이다. [math(t)]니 [math(a)]니 다른 문자들이 같이 등장해도 [math(t)]에 관한 함수, [math(a)]에 관한 함수로 착각하면 절대 안 된다.
아직도 헷갈린다면 미적분의 기본정리의 내용을 생각해 보자. 앞서 말했듯이 [math(\displaystyle\frac{\rm d}{{\rm d}x}\int_a^x f(t) \,{\rm d}t=f(x))]이다.
정적분으로 정의된 저 함수를 [math(\boldsymbol x)]에 관해 미분했더니 [math(\boldsymbol x)]에 관한 함수가 나오지 않는가. 그러므로 좌변의 함수는 [math(t)]에 관한 함수가 결코 아니고, [math(x)]에 관한 함수라는 식으로 이해하면 까먹지 않을 것이다. 그러나 이렇게 되는 이유가 뭐냐고 물어보면 결국 위의 설명을 이해하고 있어야 제대로 대답할 수 있다. 다시 말해서 이렇게만 공부하지 말고, 위의 설명을 이해하는 것이 훨씬 중요하다는 말이다.
문제: [math(\displaystyle \boldsymbol {f(x)=2x^3+3x^2+4x+\int_{0}^2 f(x) \,{\bold d}x})]일 때, [math(\boldsymbol {f(2)})]의 값을 구하시오.
【 정답 및 해설 (펼치기 · 접기) 】
[math(f(2))]의 값을 구하려면 먼저 [math(f(x))]를 알아야 하는데, [math(f(x))]를 알려면 [math(\displaystyle \int_0^2 f(x) \,{\rm d}x)]의 값을 알아야 한다. 그런데 [math(\displaystyle \int_0^2 f(x) \,{\rm d}x)]의 값을 알려면 [math(f(x))]를 알아야 한다! 이런 무한 루프를 극복하는 테크닉은 다음과 같다.
먼저 [math(\displaystyle\boldsymbol{\int_0^2 f(x) \,{\rm d}x = k})]로 놓는다. 정적분이니 특정 상수 값이 될 것이므로, 그 값을 일단 [math(k)]로 놓는 것이다.
그러면 [math(f(x)=2x^3+3x^2+4x+k)]가 된다.
[math(f(x))]의 부정적분을 [math(F(x))]라고 하면, [math(F(x) = \dfrac12 x^4+x^3+2x^2+kx)]이다.
[1] 예컨대 예제 1의 식은 [math(\displaystyle \int_{\mathbb N} \left(1+\frac{5k}{n}\right)^2 \frac{5}{n}\,{\rm d}\lfloor n\rfloor)]가 된다. 식에 [math(k)]가 그대로 남아있는데, 저 [math(k)]에 소수 같은 특정 수를 대입해서 '정적분으로 정의된 함수'로 써먹는 식이다.[2] 멀리 갈 것도 없이 제타 함수가 저런 꼴이다.[3] 사실 꼭 종속 변수를 [math(y)]로 써야 할 이유는 없다! [math(y=tf(t))]이든 [math(a=tf(t))]이든 쓰는 사람 마음이며 수학적으로 전혀 틀린 게 아니다. 그러나 관습적 표기를 따라서 종속 변수를 [math(y)]로 쓰기로 한다.