1. 개요
벡터 미적분학(Vector Calculus)은 벡터 함수와 다변수 함수의 모델링을 다루는 학문이다.[1][2] 과학 특히 물리학이나[나] 공학의 최소단위로 사용되는 벡터(vector)를 다루는데 있어서 다변수 함수와 관련해서 주요한 미분 개념인 편미분을 사용해 편미분방정식을 고안함으로서 접선(tangent line)과 접평면(tangent plane)의 식을 계산하고 벡터장(vector Field) 모델을 구현 및 해석할 수 있다.[4][가][6][7] 수학적으로는 그린 정리와 발산 정리(divergence theorem)에 접근하고 이어서 스토크스 정리를 이해할 수 있다. 또한 유체역학, 기계공학, 열역학 등에서 열 방정식, 적분방정식, 슈뢰딩거 방정식, 나비에-스토크스 방정식, 수치해석학(numerical analysis) 등 과학, 공학, 수학 전문분야를 보다 깊이있게 이해하고 응용해 볼 수 있다. 또한 벡터미적분학은 전자장을 해석하는 데 근간이 된다고 할 수 있다.벡터 미적분학의 연장선상에서 스칼라(0차텐서)와 벡터(1차텐서) 미적분의 응용은 행렬(2차텐서,Rank2)및 고차원텐서와 관련해서 현대 텐서 미적분학의 주요한 근간을 이루며 이는 현대 중력(gravitation)이론을 깊이있게 이해할수있도록 해준다.[8][9][가]
수학과, 물리학과, 공과대학에 진학한다면 공업수학, 수리물리학 등 과목에서 기초적인 내용을 배우는 경우가 많다.
2. 내용
단원 | 주제 |
1. 벡터 | 차원과 공간 그리고 변환(transformation), 좌표계, 레벨 커브(Level Curves) |
2. 다변수함수와 편미분 | 다변수함수, 편미분, gnuplot |
3. 최대값최소값 문제 | 최대최소정리, 임계점(critical point), 최소제곱법(OLS), 접평면(Tangent plane), 2차 편도함수 판정법(2nd Partial Derivative Test), 연쇄법칙 |
4. 구배와 벡터장 그리고 방향미분 | 기울기, 델 연산자(the Del Operator), 벡터장, 방향편미분(방향편도함수), 라그랑주 승수법 |
5. 편미분방정식(PDE)의 확장 | 이중적분, 변수 변환(Change of Variables), 자코비 행렬, 그린 정리, 뇌터 정리 |
2.1. 벡터해석의 응용
단원 | 주제 |
6. 유체역학(FM)과 물(water) | 베르누이 정리, 레이놀즈 수송 정리(RTT), 켈빈-스토크스 정리, 스트레스 텐서(응력/응용), 나비에-스토크스 방정식(NSE), 전산유체역학(CFD) |
7. 행렬과 텐서 그리고 중력(Gravity) | 자코비 공식, 힐베르트 액션, 크리스토펠 기호, 리만 곡률 텐서, 공변미분, 비앙키 항등식 |
8. RANK2 (지구와 우주) | 스트레스-에너지 텐서, TOV 방정식,옙센 정리,아인슈타인 방정식 |
3. 역사
역사적으로 17세기 아이작 뉴턴(Newton,I)으로부터 19세기에 걸처 윌리엄 로원 해밀턴(Hamilton,W.R.)에 이르기까지 벡터의 주요 개념들(기울기, 발산, 회전 등)이 물리학 특히 유체역학과 관련된 개념의 수학적 기술에서 주요하게 등장하고 다루어져 왔다는 것은 벡터의 정보처리 능력면에서 물리적 현상과 수학적 기술의 연결성을 잘 시사한다고 할수 있다. 이러한 벡터의 성질은 텐서 개념으로 발전하였다.[나][12]아래에 벡터 개념의 구현 시대순서와 상관없이 연대순으로 기록물을 나열해보면
1827년 오귀스탱루이 코시의 스트레스 텐서 표현식
[math( \begin{Bmatrix} p cos \lambda = A cos \alpha + F cos \beta + E cos \gamma \\ p cos \mu = F cos \alpha + B cos \beta + D cos \gamma \\ p cos \nu = E cos \alpha + D cos \beta + C cos \gamma \end{Bmatrix} = \begin{Bmatrix} A & F & E \\ F& B & D \\ E & D & C \end{Bmatrix} )]
나비에-스토크스 방정식은 코시 스트레스 텐서의 라플라시안 연산자를 잘 보여줄뿐만 아니라 벡터(rank1)가 텐서(rank2)로 다루어지는 물리적 현상을 기하학적으로도 행렬로 표현되는 과정을 이해할수 있게 해준다.
1861년 헤르만 한켈(Hermann Hankel)이 그린 정리를 사용해 켈빈-스토크스 정리를 증명하였다.
[math(\displaystyle \int ( \xi \,{\rm d}x +\eta \,{\rm d}y +\zeta \,{\rm d}z) \quad )]
[math( \displaystyle \int_{\partial S} S \cdot dC = \iint_{S} \left( \nabla \times S \right) \cdot dA )]
켈빈-스토크스 정리는 그린정리와 발산정리로부터 벡터의 컬(curl,회전) 성질을 잘 보여준다.
1903년 오스본 레이놀즈의 레이놀즈 수송 정리(RTT) 표현식
[math( \dfrac{d}{dt}\left[\Sigma (QdS)\right] = \Sigma \left( dS\dfrac{dQ}{dt} \right) + \iiint \begin{Bmatrix} \dfrac{d}{dx}\left(\overline{u}Q \right) + \dfrac{d}{dy}\left(\overline{v}Q \right) +\dfrac{d}{dz}\left(\overline{w}Q \right) \end{Bmatrix}dxdydz \quad)]
발산(divergence)과 물질 시간 도함수의 주요한 물리적 수학적 벡터 표현을 담고 있다.
4. 관련 문서
[1] \[한화토탈에너지스\] 벡터, 너 참 신기하다! https://www.chemi-in.com/675[2] \[칸아카데미\] 벡터 함수란?https://ko.khanacademy.org/math/differential-calculus/dc-adv-funcs/dc-vector-valued-func/v/position-vector-valued-functions[나] 한국수학사학회지 제20권 제2호(2007년 5월), 59-72, 벡터 개념의 강의적 체계순서에 관하여 ,박홍경,김태완,남영만 https://koreascience.kr/article/JAKO200721138196900.pdf[4] Vector Calculus, Michael Corral (Schoolcraft College) PDF LastEedition 2022(original 2008) GNU GFDL https://www.mecmath.net/[가] Basics of Fluid Mechanics ,Genick Bar-Meir 2014 GFDLhttps://open.umn.edu/opentextbooks/textbooks/85[6] 구텐베르크 프로젝트 - Calculus Made Easy , Silvanus P. Thompson 1914 ,THE MACMILLAN CO. https://www.gutenberg.org/files/33283/33283-pdf.pdf [7] 구텐베르크 프로젝트 - Elementary Illustrations of the Differential and Integral Calculus by De Morgan 1899 Kegan Paul, Trench, Tr ̈ubner & Co., Ltd., London https://www.gutenberg.org/files/39041/39041-pdf.pdf [8] \[직역:매트릭스 그리고 텐서 미적분학 \] Matrix And Tensor Calculus:WITH APPLICATIONS TO MECHANICS, ELASTICITY, and AERONAUTICS , ARISTOTLE D. MICHAL(애리스토틀 D. 미할) 1947,New York: J. Wiley, (P99)17.RlEMANN-CHRISTOFFEL TENSOR §The Riemann-Christoffel Curvature Tensor. https://archive.org/details/in.ernet.dli.2015.212664/page/n21/mode/2up[9] Tensor Calculus , J. L. Synge, A. Schild 1949 https://archive.org/details/TensorCalculusByJLSYNGEANDA.SCHILD/page/n7/mode/2up[가] [나] [12] The Method of Fluxions and Infinite Series: With Its Application to the Geometry of Curve-lines (직역)유동의 방법와 무한 급수: 곡선의 기하학에 적용 1736 https://books.google.co.kr/books?id=WyQOAAAAQAAJ&printsec=frontcover&hl=ko&source=gbs_ge_summary_r&cad=0