나무모에 미러 (일반/어두운 화면)
최근 수정 시각 : 2023-01-23 22:39:46

스윙바이

천문학
Astronomy
{{{#!wiki style="margin:0 -10px -5px;min-height:2em"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
<colbgcolor=MidnightBlue><colcolor=#fff> 배경
기본 정보 우주 · 천체
천문사 고천문학 · 천동설 · 지동설 · 첨성대 · 혼천의 · 간의 · 아스트롤라베 · 올베르스의 역설 · 대논쟁 · 정적 우주론 · 정상우주론
천문학 연구 천문학과 · 천문학자 · 우주덕 · 천문법 · 국제천문연맹 · 한국천문학회 · 한국우주과학회 · 한국아마추어천문학회(천문지도사) · 한국천문연구원 · 한국항공우주연구원 · 한국과학우주청소년단 · 국제천문올림피아드 · 국제 천문 및 천체물리 올림피아드 · 아시아-태평양 천문올림피아드 · 한국천문올림피아드 · 전국학생천체관측대회 · 전국청소년천체관측대회
천체물리학
천체역학 궤도 · 근일점 · 원일점 · 자전(자전 주기) · 공전(공전 주기) · 중력(무중력) · 질량중심 · 이체 문제(케플러의 법칙 · 활력방정식 · 탈출 속도) · 삼체문제(라그랑주점 · 리사주 궤도 · 헤일로 궤도 · 힐 권) · 중력섭동(궤도 공명 · 세차운동 · 장동 · 칭동) · 기조력(조석 · 평형조석론 · 균형조석론 · 동주기 자전 · 로슈 한계) · 비리얼 정리
궤도역학 치올코프스키 로켓 방정식 · 정지궤도 · 호만전이궤도 · 스윙바이 · 오베르트 효과
전자기파 흑체복사 · 제동복사 · 싱크로트론복사 · 스펙트럼 · 산란 · 도플러 효과(적색편이 · 상대론적 도플러 효과) · 선폭 증가 · 제이만 효과 · 편광 · 21cm 중성수소선 · H-α 선
기타 개념 핵합성(핵융합) · 중력파 · 중력 렌즈 효과 · 레인-엠든 방정식 · 엠든-찬드라세카르 방정식 · 타임 패러독스
우주론
기본 개념 허블-르메트르 법칙 · 우주 상수 · 빅뱅 우주론 · 인플레이션 우주론 · 표준 우주 모형 · 우주원리 · 암흑물질 · 암흑에너지 · 디지털 물리학(모의실험 가설) · 평행우주 · 다중우주 · 오메가 포인트 이론 · 홀로그램 우주론
우주의 역사 우주 달력 · 우주배경복사(악의 축) · 재이온화
위치천문학
구면천문학 천구 좌표계 · 구면삼각형 · 천구적도 · 자오선 · 남중 고도 · 일출 · 일몰 · 북극성 · 주극성 · 24절기(춘분 · 하지 · 추분 · 동지) · 극야 · 백야 · 박명
시간 체계 태양일 · 항성일 · 회합 주기 · 태양 중심 율리우스일 · 시간대 · 시차 · 균시차 · 역법
측성학 연주운동 · 거리의 사다리(연주시차 · 천문단위 · 광년 · 파섹)
천체관측
관측기기 및 시설 천문대 · 플라네타리움 · 망원경(쌍안경 · 전파 망원경 · 간섭계 · 공중 망원경 · 우주 망원경) · CCD(냉각 CCD) · 육분의
관측 대상 별자리(황도 12궁 · 3원 28수 · 계절별 별자리) · 성도 · 알파성 · 딥 스카이(메시에 천체 목록 · NGC 목록 · 콜드웰 목록 · Arp 목록 · UGC 목록) · 스타호핑법 · 엄폐 · 빛공해
틀:태양계천문학·행성과학 · 틀:항성 및 은하천문학 · 천문학 관련 정보 }}}}}}}}}

태양계 천문학·행성과학
Solar System Astronomy · Planetary Science
{{{#!wiki style="margin: 0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -6px -1px -11px"
<colbgcolor=DarkOrange><colcolor=#fff> 태양계
태양 ☀️ 햇빛 · 태양상수 · 흑점(밥콕 모형) · 백반 · 프로미넌스 · 플레어 · 코로나 · 태양풍 · 태양권
지구 🌍 지구 구형론(지구타원체) · 우주 방사선 · 지구자기장(자북 · 다이나모 이론 · 오로라 · 밴앨런대 · 델린저 현상 · 지구자기역전 · 지자기 폭풍)
🌙 달빛 · Earthrise · 만지구 · 지구조 · 슈퍼문 · 블루 문 · 조석(평형조석론 · 균형조석론) · 달의 바다 · 달의 남극 · 달의 뒷면 · 월석
월식(블러드문 · 슈퍼 블루 블러드문) · 일식(금환일식) · 사로스 주기
소행성체 소행성(근지구천체 · 토리노 척도 · 트로이군) · 왜행성(플루토이드) · 혜성(크로이츠 혜성군)
유성 정점 시율 · 유성우 · 화구 · 운석(크레이터 · 천체 충돌)
우주 탐사 심우주 · 우주선(유인우주선 · 탐사선 · 인공위성) · 지구 저궤도 · 정지궤도 · 호만전이궤도 · 스윙바이 · 오베르트 효과 · 솔라 세일
관련 가설 혹은 음모론 지구 평면설 · 지구공동설 · 티티우스-보데 법칙 · 제9행성(벌컨 · 티케 · 니비루) · 네메시스 가설
행성과학
기본 개념 행성(행성계) · 이중행성 · 외계 행성 · 지구형 행성(슈퍼지구 · 바다 행성 · 유사 지구 · 무핵 행성) · 목성형 행성 · 위성(규칙 위성 · 준위성 · 외계 위성) · 반사율 · 계절 · 행성정렬 · 극점
우주생물학 골디락스 존 · 외계인 · 드레이크 방정식 · 우주 문명의 척도(카르다쇼프 척도) · 인류 원리 · 페르미 역설 · SETI 프로젝트 · 골든 레코드 · 아레시보 메시지(작성법) · 어둠의 숲 가설 · 대여과기 가설
틀:천문학 · 틀:항성 및 은하천문학 · 천문학 관련 정보
}}}}}}}}} ||

1. 개요2. 역사3. 활용4. 펜로즈 과정5. 창작물에서

1. 개요

스윙바이(Swing-by)는 우주선이 적은 동력으로 먼 거리를 항행하기 위하여, 다른 자연 천체중력을 이용하는 가속 방법[1]을 말한다. 이 기법을 사용해서 우주선은 가속과 감속은 물론, 방향을 전환할 수도 있다. ‘중력 도움’이나 ‘중력 어시스트’, '중력 슬링샷', ‘플라이바이(fly-by)’ 등으로도 불린다. 이른바 중력 돌팔매질.

이동 중 쌍곡선을 그리면서 행성의 중력장을 이용한다. 중력장 안에 들어가면서 가속되며, 행성 자체도 태양 주변을 공전하므로 행성의 중력장에 잡혔다가 행성의 운동량을 일부 얻어 빠져나가면 행성의 공전 방향으로 가속을 얻을 수 있다. 이 때 에너지 보존 법칙에 따라 우주선이 운동 에너지를 얻는 만큼 천체는 에너지를 잃지만, 행성과 우주선의 질량과 속도 차이는 비교 자체가 무의미할 정도로 크기 때문에 이론상 이렇다는 것만 알면 된다.

극단적으로 쉽게 비유하면, 달려오는 시속 80km의 기차를 향해 시속 30km의 테니스 공을 던졌을 때, 테니스 공은 기차와 부딪치면서 시속 190km로 튕겨나온다.[2] 이걸 행성 중력 스케일로 거대화한 것이 스윙-바이. 테니스공과 같이, 결과적으로 우주선은 행성의 공전속력의 최대 두 배 만큼의 속력을 얻어 돌아 나오는 것으로 생각하면 된다.

파일:external/upload.wikimedia.org/768px-Voyager_2_velocity_vs_distance_from_sun.svg.png
위는 목성, 토성, 천왕성, 해왕성 스윙바이에 따른 보이저 2호의 속도 변화 그래프다. 천왕성 스윙바이에 따른 속력 증가는 목성, 토성에 비해 매우 작은 것은 천왕성과 해왕성의 공전속도가 느려 힘을 제대로 받기 힘들기 때문이다. 그리고 해왕성 스윙바이 후에는 속도가 오히려 감소한 것이 보이는데, 이는 당시 해왕성의 위성 트리톤을 탐사하기 위해 일부러 감속을 했기 때문이다.

2. 역사

최초의 스윙바이는 1959년 소련의 달 탐사선 루나 3호에 의해 시행되었으며[3], 최초의 행성 플라이바이는 화성으로 향한 1974년 NASA의 마리너 9호이며, 이후 장거리 우주탐사선의 경우 거의 반드시 이용하는 기술이다. 이 방법을 사용할 수밖에 없는 이유는 현재까지의 로켓 기술로는 로켓에 실린 물체(인공위성)를 목성 근처밖에 못 보낸다. 때문에 로켓을 더 멀리, 효율적으로 보내기 위해 추진체를 거의 사용하지 않고 가속할 수 있어 우주 항해시 탐사 거리를 비약적으로 넓힐 수 있다는 장점이 있는 스윙바이를 이용한다.

파일:external/upload.wikimedia.org/721px-Voyager_Path.svg.png
보이저 1, 2호의 스윙바이 궤도.

파일:external/solarprobe.jhuapl.edu/SP_traj_lg.jpg
2018년 발사한 태양탐사선 파커 태양 탐사선의 스윙바이 계획으로, 금성만 7번 스윙바이[4]한다. 이동 거리를 몇 배로 늘리는 매우 비효율적인 구도로 보이지만, 탐사선을 태양으로 바로 발사하면 지구의 이동속도로 인해 태양 궤도에 진입하지 못하고 진행 방향만 살짝 꺾인 채 우주 공간으로 이탈하게 된다. 스윙바이를 계속하여, 원일점을 점점 줄여야 태양 궤도에 진입할 수 있으며 최대 590만 km까지 접근한다.


유럽 우주국(ESA)에서 만든 혜성탐사선 로제타의 스윙바이 궤도를 설명하는 동영상.

보이저 탐사선은 목성에서의 스윙바이로 무려 시속 74000km[5]라는 엄청난 속도로 가속하였다. 물론 작용 반작용의 법칙에 따라 행성도 에너지를 잃지만, 목성의 질량은 1.8x1024톤인 반면 보이저 같은 우주선의 무게는 0.7톤 수준이라 목성의 공전속도 변화는 극히 미미하다 못해 관측조차 불가능한 수준. 목성의 경우 지구랑 비교해도 중량이 300배가 넘는지라 지구를(!) 통째로 스윙바이 시켜 버릴 수도 있는 정도인데 목성의 고리를 이루는 암석 하나 무게 정도밖에 안 되는 우주선 정도야 어림도 없다. 이를 반대로 생각하자면, 지구에 충돌할 수 있는 위험한 소행성들 중 몇 톤 정도로 질량이 만만한 물건은 인류 기준으로 크고 아름다운 우주선을 그 소행성에다 스윙바이를 시켜가지고 소행성을 저~멀리로 날려버릴 수 있다는 아이디어로 도출될 수 있다. 차르 봄바 같은 걸 날려서 소행성을 개발살내는 SF의 클리셰가 필요하지 않을 것이라는 말.[6]

3. 활용

대표적 장점으로는 연료를 거의 사용하지 않고 가속이 가능하다는 것이며, 덕분에 절약되는 연료만큼 다른 장비를 더 넣을 수 있다. 단점으로는 행성에 접근하기 위해 계산과 시간이 더 필요하며, 행성의 궤도가 맞지 않을경우 쓸 수 없다. 일례로 뉴 호라이즌스는 목성을 스윙바이 했는데 이때 시기를 놓쳤다면 무려 11년을 더 기다려야 했다.

주로 장거리 항행을 위한 가속도를 얻기 위해 사용하며, 한 번의 가속으로 불충분한 경우 연달아 다른 행성에서 가속도를 더 얻기도 한다. 보이저 탐사선의 경우 목성, 토성, 천왕성, 해왕성이 비슷한 방향으로 늘어서는 황금 같은 기회를 이용해 외행성을 탐사하였고, 갈릴레오 탐사선은 6년에 걸쳐 금성, 지구, 한 번 더 지구 순으로 스윙바이를 이용해 목성까지 도달하였다.

이렇게 스윙바이를 이용하여 가속도 할 수 있지만 감속도 할 수 있다. 앞서의 달려오는 기차의 예시에서 반대로 달려가는 기차의 등짝에 대고 공을 던진 경우, 80km/h로 달리는 기차의 등짝에 110km/h 속도로 공을 던지면 반발력은 30km/h 분량밖에 못 얻는다. 즉 기차와 마주보게 던지면 가속하고, 같은 방향으로 던지면 차이만큼 감속한다. 행성의 진행방향 쪽을 감으면서 (태양계 기준으로는 위에서 봤을 때 시계방향으로) 돌면 감속이 된다.

도로 위의 자동차의 경우에는 마찰을 이용하여 브레이크 같은 것으로 쉽게 감속할 수 있지만 거의 텅 빈 공간인 우주를 나아가는 우주선은 브레이크를 만들 수가 없다. 굳이 하려면 연료를 진행방향 반대로 분사하는 방법이 있지만 그 과정에서 소모되는 연료를 절감하기 위해 스윙바이를 이용하는 것이다. 마리너 10호와 메신저호가 감속을 위해 스윙바이를 이용했었다.

이러한 감속은 지구보다 안쪽에 있는 행성(이래봤자 금성, 수성 둘 뿐이지만)의 탐사에 필수적이다. 일반적인 생각과는 다르게 가장 많은 연료가 필요한 행성은 멀리 떨어진 외행성들이 아닌 수성이다. 지구와의 공전 속도 차이(delta-v)가 가장 크기 때문.[7] 얼핏 생각하기에 태양의 중력을 이용해서 수성 쪽으로 끌려가면 그만이라고 생각할 수도 있지만, 연료 분사나 스윙바이를 통한 감속이 없으면 수성을 휙 하고 스쳐 지나서 태양을 한 바퀴 돈 뒤 다시 지구궤도의 거리로 돌아올 뿐. 궤도에 안착하기 위해서는 엄청난 감속을 해야되는데, 이게 현재의 로켓 기술로는 가성비 따지기 이전에 도저히 감당이 안 될 수준이라, 수성이나 금성으로 가기 위해서는 수차례 스윙바이를 하면서 감속을 한다.

가속, 감속뿐만 아니라, 궤도경사각을 조절하는데도 스윙바이를 사용할 수 있다. 1990년 우주왕복선을 통해 발사된 미국의 태양탐사선 '율리시스'는 목성의 궤도를 이용해 궤도경사각(태양기준)을 80도까지 변경하였다. 또한 1997년 발사된 AsiaSat의 통신위성 'AsiaSat 3[8]'은 발사체인 프로톤 로켓의 4단 엔진 이상으로 인해 궤도경사각이 58도인 지구 저궤도에 좌초되자, 궤도경사각을 낮추기 위해[9] 달을 플라이바이하여 지구 정지궤도에 안착하였다.

스윙바이를 하면 에너지 보존법칙에 따라 우주선이 힘을 받은만큼 행성의 속도가 떨어진다. 예를들어 1989년 발사된 갈릴레오 탐사선은 지구를 스윙바이 했는데 이때문에 지구는 1억년에 1.2cm 정도 공전속도가 느려졌다고 한다. 이정도면 행성에 영향이 없다고 봐도 무방하지만 미래에 우주선이 매우 커진다면 행성의 공전속도와 궤도에 지대한 영향을 미칠 수 있으므로 사용하기 어려워질 것이다.[10]

4. 펜로즈 과정

스윙바이의 블랙홀 버전으로 '펜로즈 과정'이라는 것이 있다. 로저 펜로즈이론적으로 정리한 방법이라서 이렇게 불린다. 회전하는 블랙홀, 즉 각운동량이 있는 블랙홀을 '커 블랙홀'이라고 부르는데, 이 경우 '에르고스피어'라는 도넛모양의 특이 영역이 존재한다. 이를 이용해서도 스윙바이가 가능하다.

물론 현실적으로 블랙홀 근처에서 버틸만한 강도의 우주선은 인류가 아직 만들어 내지도 못했고, 여기서 탈출할만한 추진력을 내지도 못하기 때문에, 완전히 이론적인 분야일 뿐이기에 픽션에서나 가능하다. 과거 만화로 보는 현대과학의 세계에서 묘사된 적이 있으며, 영화 인터스텔라에서 이 과정에 대해 자세히 묘사된다.

5. 창작물에서

창작물에서는 일종의 클리셰로 많이 사용된다. 예를 들어 '저 별로 가야하는데 연료가 부족하다.' → '중력턴이 출동한다.' 사실상 필수적인 테크닉이라 일반적으로 알고 있을 내용임에도 비장의 수로 발견되는 게 포인트. 물론 수시로 사용되는 창작물도 많다. 예를 들어 우주 공간에서의 항해가 일반화된 기동전사 건담 등. 태양의 사자 철인 28호의 후반 부분에도 스윙바이를 이용해 지구에서 명왕성까지 항해하는 내용이 나온다. (비장의 수로 등장하지는 않는다)

이 문서에 스포일러가 포함되어 있습니다.

이 문서가 설명하는 작품이나 인물 등에 대한 줄거리, 결말, 반전 요소 등을 직·간접적으로 포함하고 있습니다.



[1] 일반적인 우주항해로는 해왕성까지 약 30년이나 걸리지만 스윙 바이를 이용하면 약 12년 만에 도달할 수 있다[2] 물론 현실에선 에너지의 손실로 인해 시속 190km가 온전히 나오지는 않지만 일단 이론 상으로는 그렇다. 참고로, 여기서 시속 190km는 외부에서 관측한 테니스공의 속력이다.[3] 달을 플라이바이함으로써 궤도면이 변화했다.[4] 스윙바이 횟수 최다기록[5] 초속 약 21km. 실감이 안 난다면 서울-부산은 25초 만에 도달하며, 지구에서 달까지 약 4시간 만에 도착하는 속도다.[6] 의외로 그런 내용이 나오는 영화가 있긴 하다. 바로 멜랑콜리아. 지구와 충돌 코스로 접근하는 멜랑콜리아라는 행성(?)이, 지구의 중력으로 스윙바이를 한다. 문제는 지구 공전방향의 반대쪽으로 스윙바이를 했기 때문에, 지구와의 상대속도가 오히려 줄어들며 결국 지구에 다시 접근해 충돌한다.(...)[7] 엄밀히 말하자면 목적지까지 갔을 때 태양의 중력으로 인한 가속도로 얻어지는 속도와 해당 행성의 공전 속도의 차이지만 결과적으로는 같은 원리다.[8] 이후 'PAS-22'로 명칭 변경[9] 대부분의 상용 통신위성은 정지궤도에 위치한다.[10] 이경우 태양이나 항성에 스윙바이를 사용할수는 있겠으나 열기에 대한 대비책이 필요하고, 항성급 이동을 할 경우 스윙바이로 인한 추가 운동에너지는 무시할 정도이므로 사용하지 않을 가능성이 높다.[11] 이 탈출 작전의 약점은 적의 공격에 무방비로 노출되는 것이었기에 이렇게나 털린 것도 있지만 슈타인메츠는 어차피 가만히 있어봐야 포격에 맞아죽든 블랙홀에 빨려 들어가든 둘 중 하나이기에 이 방법을 사용했다.